

طرح تلفیق لایه های اطلاعاتی پایه و معرفی مناطق امیدبخش معدنی کشور

سازمان زمین شناسی و اکتشافات معدنی کشور

گزارش اکتشافات ژئوفیزیک در محدوده معدنی بزمان

مجری طرح : مهندس ناصر عابدیان

مجری فنی : مهندس ابراهیم شاهین

ناظر فنی : مهندس سید ابوالحسن رضوی

مشاور : زمین فیزیک

تهران 1387 فهرست مطالب

صفحه	عنوان
5	چکیدہ
6	پیش آغاز

بخش اول: کلیات

9 – هدف از اکتشافات ژئوفيزيک

13		لەە	ودهای استفاده ش	_ل های الکتر	و آرايش	روش ها	ي در مورد	(صه ا;	3 – خا
القائى	سيون	پلاريزا	روش	_	1	_			3
IP	پديده	شرح	_	1	_	1	_	3	13
IP	پديده	منشاء	_	2	_	1	_	3	13
ترونيكى	يا الك	فلزى	پلاريزاسيون	_	3	- 1		3	13
كتروليتي	يا ال	غشائى	پلاريزاسيون	_	4	- 1		3	14
القائى	ريزاسيون	رى پلا	اندازه گی	_	5	- 1	_	3	14
پيوسته)	با جريان	زه گیری	حوزه ای (اندا	زمان –	روش	- 6	- 1 -	- 3	14
پيوسته)	با فركانس	ہ گیری	حوزه ای (انداز	کانس –	ِش فر	7 – رو	' – 1 -	- 3	15
سنجى	مت	مقاو	روش	_	2	_			3 16
شده	استفاده	ئترودى	های الک	آرايش	_	3	_		3 17

بخش دوم : بررسی نتایج مطالعات ژئوفیزیک در محدوده معدنی بزمان

صفحه

عنوان

29 - بررسی نتایج بدست آمده در محدوده معدنی بزمان
20 - 1 - 1 - بررسی نتایج حاصله در زون شماره
29 - 1 - 1 - 7 - بررسی نقشه های تغییرات مقاومت الکتریکی
31 (IP) - 1 - 7 - بررسی نقشه تغییرات شارژابیلیته (IP)
34 - 1 - 7 - 1 - 7
34 - 37 - 37
37 - 38 - 1 - 7

- بررسی شبه مقطع 55
- بررسی شبه مقطع 75
- بررسی شبه مقطع 105 45 22 - بررسی نتایج حاصله در زون شماره 22 46 RS - 2 - 1 - بررسی نقشه تغییرات مقاومت الکتریکی RS 47 (IP) - 2 - 2 - 7 49 49 51 - بررسی شبه مقاطع 70 51 - بررسی شبه مقطع 70
- بررسی شبه مقطع 135 52

پيشنهادها	و	كلى	گیری	نتيجه	—	8
						53

59

9 – تشكر و امتنان

فهرست شکل ها و نقشه ها

شکل شماره A۱ نقشه راه های دسترسی منطقه شکل شماره A2 نقشه زمین شناسی منطقه با مقیاس 1/10/000 شکل شماره A3 تصاویری از برونزد رگه های سیلیسی شکل شماره A4 عکس هوائی منطقه بزمان

	<u>زون Z</u> ۱
Configuration Map	نقشه شماره 1 -B zı نقشه موقعیت
Resistivity Map	نقشه شماره Bzı-2 نقشه تغييرات مقاومت الكتريكي RS

Chargeability Map نقشه شماره IP نقشه تغييرات شارژ ايبليته IP نقشه های شماره 4-B z1 ، 4-B و 21 4-B تا و 23 \dot{B} و 21 \dot{B} الماح و مقاطع و مقاطع مدلسازی شده \dot{B} - \dot{B} المازی شده \dot{B} - \dot{B} المازی شده \dot{B} Pseude Section & Invers Model Map (Chargeability&Resistivity) **زون Z**2 نقشه شماره 1-Bz2 نقشه موقعیت Configuration Map نقشه شماره 2-Bz2 نقشه تغییرات مقاومت الکتریکی RS و نقشه تغییرات شارژابیلیته IP Chargeability& Resistivity Map نقشه های شماره Bz2 ، 3-Bz2 و 22 3-B تا مدلسازی شده مقاطع ومقاطع مدلسازی شده 4-B z_2 ، 4-B z_2 Pseude Section & Invers Model Map (Chargeability & Resistivity) نقشه شماره Bz2-5 نقشه RS مناطق Z1 و Z2 با مقياس 1/10/000 Resistivity Map (Z₁&Z₂) نقشه شماره Bz2-6 نقشه IP مناطق Z1 و Z2 با مقياس 1/10/000

Chargeability Map (Z1&Z2)

در محدوده معدنی بزمان در سنگ های آتشفشانی با دگرگونی ضعیف ، آثار آرژیلی شدن و چندین مرحله سیلیسی شدن پدید آمده است. در رگه های سیلیسی در مواقعی عیار تقریبی طلا به 1 گرم در تن می رسد، شناسائی و بررسی این رگه های سیلیسی مورد نظر بوده و برای تفکیک آنها و تعیین گسترش این رگه ها از روش ژئوالکتریک شامل برداشت فاکتورهای مقاومت الکتریکی RS و شارژابیلیته IP استفاده شده است.

ابتدا مناطق مورد نظر کارفرما با آرایه مستطیلی Rectangle زیر پوشش قرار گرفته و پس از تفکیک آنومالی های مقاوم الکتریکی در رابطه با رگه های سیلیسی، برای تعیین گستره عمقی آنها با استفاده از آرایه دوقطبی – دوقطبی Ipole-Dipole تعداد 8 شبه مقطع از مراکز آنومالی تهیه گردیده و با استفاده از نرم افزار RES2DINV مقاطع مدلسازی تهیه گردید و سپس نتایج با اطلاعات زمین شناسی و ژئوشیمیائی تلفیق گردیده و پس از بحث و تبادل نظر با کارشناسان زمین شناسی منطقه ،محل گمانه های اکتشافی با مشخصات کامل شامل آزیموت ، شیب و طول

یاد آور می گردد که در این منطقه کلا" 3660 اندازه گیری بعمل آمده که 1680 اندازه گیری با آرایه مستطیلی و 1980 اندازه گیری با آرایه دوقطبی – دوقطبی اوDipole-Dipole انجام گرفته است.

پیش آغاز

اطلاعات کلی از یک منطقه که در زمان های زیادی بدست آمده و جمع آوری آنها و زمین شناسی عمومی منطقه همراه با برداشت های ژئوفیزیک هوائی می تواند زون های جالب برای اکتشافات معدنی را مشخص نماید ، اکتشافات زمینی و بازدید از مناطق مشخص شده و تهیه نقشه های زمین شناسی عمومی و برداشت محدوده زون های مینرالیزه قبل از انجام مطالعات ژئوفیزیک زمینی انجام می گیرد.

بطورکلی میتوان گفت که مطالعات ژئوفیزیک همراه با مطالعات ژئوشیمی تفضیلی در فاز دوم اکتشافات معدنی قرار میگیرد ، نحوه انتخاب محدوده هائی که در این گزارش به نتایج مطالعات ژئوفیزیک آنها پرداخته میشود نیز بر این اساس بوده ضمن اینکه اکتشافات ژئوشیمی انجام شده توسط طرح اکتشاف مواد فلزی در شمال بزمان برای این منطقه نیز علاوه بر زمین شناسی منطقه مبنای انتخاب محدوده های مطالعات ژئوفیزیک بوده است، با توجه به مینرالیزاسیون موجود در منطقه، استفاده از روش ژئوالکتریک ، مغناطیس سنجی می توانست اساس مطالعات باشد ، با توجه به برنامه پیشنهادی برای مطالعات ژئوفیزیک، در فاز اول از روش ژئوالکتریک شامل روش قطبش القائی Polarization Induced و روش مقاومت سنجی Resistivity که بطور مخفف IP و RS اطلاق می شود استفاده شده است . مطالعات ژئوفیزیک این منطقه طی قرارداد الحاقی به این مشاور واگذار گردیده است ، برای انجام این مطالعات یک اکیپ ژئوفیزیک در نظر گرفته شد که شامل آقایان افخمی کارشناس و آقایان بهرام فتاح ، منصور ایرانشاهی و یوسف کشیش یوسفیان تکنسین های این مشاور بوده است ، سرپرستی اکیپ ها ،برنامه ریزی و تهیه گزارش توسط آقای دکتر جعفر کیمیاقلم انجام گرفته است ، لازم به توضيح است که کارشناسان اين مشاور در مورد نتايج بدست آمده با کارشناس زمين شناسي منطقه آقای مهندس امیدوار بحث های لازم را انجام و تبادل اطلاعات نموده اند، در مواقعی که برنامه های تکمیلی از طرف مشاور ارائه شده پس از تائید کارشناسان زمین شناسی و نماینده کارفرما به مورد اجرا در آمده است.

گزارش تهیه شده شامل دو بخش می باشد ، در بخش اول کلیاتی راجع به مناطق مورد اکتشاف ، هدف از مطالعات ژئوفیزیک ،نحوه انجام عملیات صحرائی ، روش های ژئوفیزیکی استفاده شده ، نحوه پردازش داده ها و زمین شناسی محدوده زیر پوشش ،عنوان شده و سپس در بخش دوم نتایج مورد بحث و بررسی قرار گرفته سپس نتیجه گیری کلی پس از تلفیق کلیه اطلاعات انجام و نهایتا" پس از بحث و تبادل نظر با کارشناسان زمین شناسی منطقه محل گمانه های اکتشافی ارائه گردیده است.

كليات

بخش اول: کلیات

1 – هدف از مطالعات ژئوفیزیک

با توجه به مینرالیزاسیون منطقه، استفاده از روش ژئوالکتریک IP و RS مورد توجه کارشناسان قرار گرفته است، با کاربرد این روش کلیه سولفورها به جز سولفور روی که جلای صمغی دارد می تواند مورد اکتشاف قرار گیرد، همچنین موقعیت برخی کانه ها از جمله اکسید روی ، سولفور روی و ... با توجه به مقاومت الکتریکی آنها و سنگ در بر گیرنده می تواند مبنای اکتشافات نیز باشد ، در این منطقه که کانه های سرب و روی مورد توجه است محدوده های کانه دار بصورت مستقیم و غیر مستقیم مورد کاوش قرار می گیرند ،بطورکلی هدف از مطالعات ژئوفیزیک در این منطقه را میتوان بصورت زیر عنوان نمود. الف – مشخص کردن آنومالی های RS و IP ب – تعیین گستره آنومالی های RS و عمقی د – تلفیق نتایج با اطلاعات موجود دیگر از جمله زمین شناسی و ژئوشیمی و بحث و تبادل نظر با کارشناسان زمین شناسی ه – تعیین محل حفاری های اکتشافی و تعیین اولویت آنها

2 - نحوه انجام عملیات صحرائی و مشخصات دستگاه های ژئوفیزیک

برای برداشت داده ها در هر محدوده با داشتن اطلاعات زمین شناسی و وسعت و گستره زون های مینرالیزه ابتدا خط مبنائی در امتداد زون های مینرالیزه درنظر گرفته شده و با G.P.S این خط در زمین با فواصل 50 متر از یکدیگر علامت گذاری و با رنگ مشخص گردیده است ، با توجه به شبکه اندازه گیری ، ایستگاه های اندازه گیری با فواصل 20 متر در روی مقاطعی که عمود بر خط مبناء می باشند با G.P.S در زمین پیاده شده اند ، در مناطق مورد مطالعه برای اندازه گیری فاکتورهایIP و RS از دو سری دستگاه های IP استفاده گردیده که شامل یک دستگاه گیرنده رقومی (IPR-10A) و یک دستگاه ترانسمیتر TSQ-3/3000W و یک دستگاه ژنراتور می باشد ، اندازه گیری در حوزه زمان انجام می گیرد و مشخصات دستگاه های گیرنده و ترانسمیتر آنها بصورت زیر است :

گیرنده (Receiver) اکیرنده

- طیف ولتاژ اولیه از 30 میکرو ولت تا 30 ولت
 دقت اختلاف پتانسیل اندازه گیری شده 0.1mv/v
 دقت پتانسیل خودزا 1٪
 - صفحه نمایشگر رقومی
 - ابعاد 310mm×150mm×170mm -
 - وزن 3 کیلو گرم
- این دستگاه مقدار شارژ ابیلیته را پس از خنثی کردن پتانسیل طبیعی زمین در 6 پنجره زمانی در منحنی دشارژ می تواند اندازه گیری کند.

ترانسميتر TSQ-3/3000W :

- قدرت خروجي حداكثر 3000
- ولتاژ خروجی از 300 تا 1500 ولت
 - حداكثرجريان خروجي 10 آمپر
 - دقت قرائت MA میلی آمپر
- ابعاد 350mm×320mm -
- درجه حرارت مجاز محیط اندازه گیری از c^oc+ تا 30°c+ تا
 - وزن 30 کیلو گرم

الكترودها

 برای ارسال جریان الکترودهای آهنی و برای اندازه گیری از الکترودهای غیر قابل پلاریزه استفاده می شود.

شكل الف - دستگاه ژنراتور ، دستگاه ترانسيمتر و دستگاه گيرنده

شكل ب – دستگاه ترانسيمتر TSQ-3

شکل ج – گیرنده IPR-10A دستگاه های ژئوفیزیکی IP ساخت کمپانی Scintrex کانادا که مورد استفاده قرار گرفته است.

3 – خلاصه ای در مورد روش ها و آرایش های الکترودهای استفاده شده

(IP) Induced Polarization روش پلاريز اسيون القائى-1-3

IP شرح پدیده – 1 - 1 - 3

دوقطبی AMNB (شکل 3)را در نظر گرفته و با تزریق جریان مستقیمی توسط دو الکترود A و B با شدت جریان I مقدار پتانسیل حاصله ΔV بین دو الکترود M و N قابل اندازه گیری است . شکل های شماره 1 الف و 1 ب تغییرات شدت جریان I و ΔV را برای یک سیکل زمان θ +T نشان می دهد ، T زمان بخش جریان در زمین و θ زمان قطع می باشد، زمان های T و θ به اندازه های انتخاب می شوند تا مقدار آن کافی برای برقرارای یک سیستم پخش و قطع کامل جریان در زمین باشد.

با توجه به شکل 1 (الف) دیده می شود که افت پتانسیل ΔV در موقع قطع جریان بصورت منحنی تغییر کرده (منحنی دشارژ) و در نهایت مجانب با محور زمان می گردد. این پدیده که می تواند چند ثانیه تا چند دقیقه طول بکشد بسیار مشخص بوده و نتیجه یک عمل القائی است و بنام پدیده پلاریزاسیون القائی Induced Polarization (IP) نامیده می شود ، این پدیده را بصورت بهتری پس از قطع جریان می توان مورد تجزیه و تحلیل قرار داد ، اندازه گیری مقدار پتانسیل باقیمانده ΔVIPo در زمان بلافاصله قطع جریان بعلت گرادیان زیاد منحنی مشکل می باشد و لذا تغییرات آن پس از گذشت زمان کمی اندازه گیری می گردد (ΔVIPt).

IP منشاء پديده – 2 – 1 – 3

دامنه منحنی با در نظر گرفتن کلیه شرایط مساوی در زمین مربوط به دو قطبی شدن مواد متشکله لایه های زمین می باشد، می توان چنین تصور کرد که اگر زمینی متشکل از خازن های کوچکی باشد وقتی جریان به زمین تزریق می شود شارژ شده و در موقع قطع جریان تخلیه می شوند، منحنی VIP را منحنی دشارژ می نامند البته این مطلب یک تصویر کلی از پدیده IP را بیان می کند ولی برای منشاء آن عوامل مختلف ذکر می کنند که می توان دو مورد زیر را ذکر کرد.

3 – 1 – 3 – پلاريزاسيون فلزي يا الكترونيكي

وقتی یک الکترود فلزی در یک محلول یونیزه بدون اعمال ولتاژی قرار داده شود بارهای الکتریکی مثبت و منفی از هم جدا شده و پتانسیلی بین الکترود و محلول ایجاد می کنند، زمانیکه به این مجموعه ولتاژی اعمال گردد تعادل یونی بهم می خورد و پتانسیلی بین الکترود و محلول وجود خواهد داشت و هنگامیکه ولتاژ اعمال شده حذف شود تعادل یونی به واسطه پخش یون ها دوباره بر گردانده می شود ، در زمین انشتار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج می شود ، در زمین انشتار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج می شود ، در زمین انشتار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج قرار می گیرد پلاریزه می شود و بدین ترتیب اختلاف پتانسیلی در دو طرف دانه کانی فلزی بوجود می آید ، با قطع جریان از زمین ، یون ها از طریق محیط الکترولیتی پخش شده و اختلاف پتانسیل ایجاد شده در دانه کانی فلزی در زمان کوتاهی به سمت صفر میل می کنند این فرایند مبنای اندازه گیری شار ژابیلیته در روش اندازه گیری زمان حوزه ای است، از آنجائیکه این پدیده سطحی است لذا هر قدر کانی سازی بصورت دانه ای (Dessiminated) باشد پدیده IP قوی تر خواهد بود و این مزیتی بر سایر روش های ژئوفیزیکی است.

3 – 1 – 4 – پلاريزاسيون غشائي يا الكتروليتي

این نوع پلاریزاسیون در یک محدوده اکتشافی در سنگ ها وجود داشته و زمینه (Background) شارژابیلیته تشکیلات زمین شناسی را تشکیل می دهد ، پلاریزاسیون غشائی عمدتا" بعلت حضور کانی های رسی است ، سطح کانی های رسی دارای بار منفی است و در نتیجه بارهای مثبت را جذب می کنند ، بعد از گسترش جریان در زمین بارهای مثبت جابجا شده و پس از قطع جریان به وضع اولیه برمی گردند این عمل ایجاد پدیده IP می کند.

- 3 1 5 اندازه گیری پلاریزاسیون القائی روش های معمول اندازه گیری IP شامل دو روش زمان حوزه ای و روش فرکانس حوزه ای است که نوع مختصری از آنها ارائه می گردد.
 - 5 1 6 روش زمان حوزه اي (اندازه گيري با جريان پيوسته)

همانگونه که در پدیده IP شرح داده شد زمانیکه جریان پیوسته ای در طی مدت کوتاهی به زمین تزریق می شود پس از قطع جریان مقدار ولتاژ ایجاد شده طی یک منحنی دشارژ به صفر می رسد ، مقدار شارژابیلیته را در لحظه قطع جریان نمی توان اندازه گیری نمود زیرا گرادیان منحنی بسیار زیاد است، در عمل محدوده زیر منحنی دشارژ را در زمان t1 و t2 پس از قطع جریان اندازه گیری کرده و مقادیر آن به ΔVs (ولتاژ اولیه) تقسیم می گردد تا تاثیر تغییرات ولتاژ اولیه از بین برود در این صورت مقدار شارژابیلیته اندازه گیری شده برابر:

5 – 1 – 7 – روش فرکانس – حوزه ای (اندازه گیری با فرکانس پیوسته) در این روش مقاومت ویژه ظاهری در دو فرکانس مختلف کمتر از 10 هرتز (بطور معمول 1/0 و 5 هرتز یا 0/3 و 2/5 هرتز) اندازه گیری می شود . مقاومت ویژه ظاهری سنگ در فرکانس پائین تر (paf) بیشتر از این مقدار در فرکانس بالاتر (paF) می باشد.بدین ترتیب در روش فرکانس – حوزه ای پارامتر اثر فرکانس (FE) بصورت زیر تعریف می شود :

PFE = 100 FE

$$MF = A(\rho_{af} - \rho_{aF}) / \rho_{aF}$$
. ρ_{af}

 $MF = A.FE.\sigma_{af}$

k=-----1/AM-1/AN-1/BM+1/BN

بوده و بر حسب موقعیت الکترودها متفاوت است ، این ضریب برای آرایه های مختلف قبلا" محاسبه می گردد. یادآوری می گردد که مقاومت ویژه سنگها تابعی از عوامل زیر است:

وجود کانی های هادی از جمله سولفورها

از بحث پیرامون مسائل دیگر در مورد این روش خودداری کرده و متذکر می شود که اندازه گیری مقاومت ویژه هم زمان با اندازه گیری شارژ ابیلیته انجام می گیرد، بدین ترتیب که جریان تزریق شده به زمین مشخص بوده و پتانسیل توزیع شده در زمین توسط دستگاه گیرنده اندازه گیری می شود، بدینوسیله با در دست داشتن مقادیر Ι و Δ۷ مقدار م برای هر ایستگاه از رابطه Δν/I هم محاسبه می گردد. با تهیه نقشه های تغییرات مقاومت ویژه ، کنتاکت ها ، گسل های احتمالی ، محل تجمع مواد هادی و غیره مشخص می گردد. لازم به یادآوری است چون در موقع اندازه گیری مقدار گر برای محاسبه مقاومت ظاهری باید مقدار پتانسیل خودزای زمین خنثی گردد لذا مقدار آن قابل اندازه گیری است ولی از آنجائیکه نقشه های پتانسیل خودزای زمین خنثی گردد لذا مقدار آن قابل اندازه گیری مشخص نماید (مگر در حالتهای خاص) لذا فقط نقشه های تغییرات شارژ ابیلیته و مقاومت ظاهری تهیه و مورد تفسیر قرار می گیرند.

3 – 3 – آر ایش های الکترودی استفاده شده:

تقریبا" همیشه اندازه گیری های مقاومت ویژه همراه با برداشت های IP صورت می پذیرد. برداشت ها بطور معمول در دو مرحله و با استفاده از دو آرایش انجام می گیرد . درمرحله اول بمنظور شناخت گسترش جانبی بی هنجاری ها از آرایش مستطیل (Rectangle) استفاده می شود و سپس جهت بررسی عمقی بی هنجاری ها آرایش دو قطبی – دوقطبی (Dipole-Dipole) بکار گرفته می شود . در اینجا به چگونگی برداشت های IP و مقاومت ویژه با آرایشهای یاد شده که بیشترین کاربرد را در این مطالعات بخود اختصاص می دهد پرداخته میشود.

- آرایش الکترودی مستطیلی یا Rectangle :

در این نوع آرایش الکترودی یک خط ثابت جریان (AB=L) را در نظر گرفته و جریان توسط دو الکترود A و B به زمین فرستاده می شود ،اندازه گیری شارژابیلیته و مقاومت الکتریکی توسط دو MN و N و در روی پروفیل هائی موازی AB انجام می گیرد. مقدار تغییر محل یا جهش MN روی پروفیل ها برابر فاصله MN=A می باشد انتخاب L و A بستگی به عمق و ابعاد توده معدنی دارد، اندازه گیری شارژ ابیلیته و مقاومت ظاهری به نقطه وسط MN نسبت داده می شود. عمق نفوذ با از دیاد L اضافه می شود و می توان عملیات را با مقادیر مختلف L انجام داد. نقاط اندازه گیری معمولا" در داخل مستطیلی به ابعاد AB/3 و AB/2 قرار دارد که مرکز آن O منطبق با وسط AB می باشد. شکل شماره 2 شمائی از این آرایه الکترودی را نشان می دهد. وقتی اندازه گیری در مستطیلی تمام شد محدوده مستطیل دیگر را مجاور آن می توان شروع کرد و بدین ترتیب تمام منطقه زیرپوشش قرار می گیرد. بزرگترین امتیاز این آرایه در این است که الکترودهای A و B ثابت نگه داشته شده و فقط الکترودهای M و N متحرک می باشند همچنین در زمان اندازه گیری شدت جریان ثابت می باشد.

- آرایش داپیل - داپیل BIPOLE - DIPOLE : (دوقطبی - دوقطبی) در این آرایش ،الکترودهای N,M,B,A در روی یک پروفیل قرار دارند. این آرایه با AB=A و OIO2=L1 و OIO2 و OL=M مشخص می شود. OI و O2 بترتیب مراکز AB و MN می باشند، در عمل معمولا" L=nL و L = L انتخاب می شود. شکل شماره 3 وضعیت الکترودها را نسبت بهم برای AB, 2= 1 نشان می دهد.در این آرایه در هر اندازه گیری چهارقطبی ABMN را با یک جهش معین تغییر می دهند، برای تهیه شبه مقطع از زمین می توان چنین عمل نمود که برای یک ثابت L یعنی موقعیت AB ، با تغییر دادن متعدد محل الکترودهای M و N روی یک پروفیل به اندازه گیری ها نقاط شارژ ایبلیته نقاط مختلفی در عمق اندازه گیری میشود، با تغییر محل AB و تکرار اندازه گیری ها نقاط دیگری مورد اندازه گیری قرار میگیرد، اندازه گیری ها معمولا" به نقطه برخورد خطوطی که با زاویه 45 درجه از نقاط O2 و O

بدین ترتیب با رسم خطوط هم شارژ ابیلیته شبه مقطعی از زمین تهیه می شود مسلما" این نوع شبه مقطع یک حالت کلی از تغییرات شارژ ابیلیته زمین را نشان می دهد زیرا عمق نفوذ فقط به فاصل الکترودها مربوط نبوده و به مقاومت ظاهری و تغییرات آن نیز بستگی دارد

(لف) نمودار تغییرات شدت جریان

(الف) نمودار تغییرات شدت جریان

(ب) نمودار تغييرات پتانسيل (ب)

شکل شماره 1– تغییر ات جریان و پتانسیل در زمین در یک سیکل قطع و وصل جریان

Fig. No.: 3 Dipole - Dipole Array

4 – نحوه پردازش – تفسیر و نرم افزارهای مورد استفاده

پس از برداشت داده ها و محاسبه مقاومت الکتریکی ، نقشه های تغییرات شارژابیلیته IP ، تغییرات مقاومت الکتریکی RS و شبه مقاطع IP و RS ومقاطع مدلسازی شده IP و RS تهیه می گردد ، نحوه تهیه این نقشه ها ، پردازش و تفسیر نتایج بصورت زیر می باشد.

Chargeability Map IP تهیه نقشه تغییرات شارژ ابیلیته -1-4

برای تهیه نقشه تغییرات شارژ ابیلیته ابتدا به طیف تغییرات مقادیر شارژابیلیته توجه کرده و فاصله پربند ها طوری انتخاب می شود که محدوده هائی که دارای شارژابیلیته نسبتا" زیاد است بخوبی درنقشه ظاهر گردند ، می توان فاصله پربندی را 0.5mv/v تا 5mv/v و یا بیشتر انتخاب نمود، این نقشه ها با مقیاس خطوط رنگی و یا با طیف رنگ نشان داده می شوند می توان این نقشه ها را نیز بصورت 3 بعدی ارائه نمود.

برای تعبیر و تفسیر نقشه تغییرات شارژابیلیته با توجه به مقدار زمینه Back Ground در یک سازند، محدوده های آنومالی مشخص می شود، معمولا" محدوده ایکه مقادیر شارژابیلیته آنها بیشتر از 2 تا 2/5 برابر زمینه می باشند آنومالی تلقی می گردد، محدوده های آنومالی بصورت محورهای آنومالی مشخص شده و زون بندی و شماره گذاری می شوند ، تفسیر آنومالی ها عبارتست از ارائه گستره آن ، مطابقت آنها با سازندی که آنومالی در آن واقع شده ، بررسی آنومالی ها در سر زمین و انطباق آنها با کانی سازی های موجود ، مطابقت نقشه های تغییرات IP و RS و مشخص کردن هم بری ها و گسل ها و غیره (Resistivity Map) RS لا الكتريكى-2-4

پس از محاسبه مقاومت الکتریکی برای هر ایستگاه با آرایه مستطیلی نقشه تغییرات مقاومت الکتریکی تهیه می گردد ، این نقشه ها باید پربندی مناسب داشته باشند ، ابتدا طیف تغییرات آن مشخص می گردد ، در مواقعی که طیف تغییرات کم می باشد می توان از پربندی معمولی با خطوط هم مقاومت الکتریکی با فواصل 10 ، 20 و ... اهم متر استفاده نمود ، با توجه به اینکه در اغلب موارد محدوده هائی که دارای افت مقاومت الکتریکی می باشد و احتمال داده می شود که این افت مقاومت الکتریکی در رابطه با وجود زون های مینرالیزه خصوصا" سولفیدها باشد باید پربندی را طوری انتخاب که زون های هادی الکتریکی گویاتر درنقشه ظاهر شوند ، استفاده از مقیاس خطوط رنگی و یا طیف رنگی این زون را بارزتر مشخص می کند.

در مواقعی که طیف مقاومت الکتریکی وسیع است از ضریب استفاده شده است بطوریکه مقدار خطوط میزان مقاومت الکتریکی برابر خط میزان جانبی آن است،در این نوع پربندی زون های هادی الکتریکی بهتر نمایان می شوند در نقشه هائی از این نوع پربندی استفاده شده خطوط هم تراز با هموار کردن مقادیر عددی بصورت زیر انتخاب شده اند.

...., 140. 100. 70. 50. 35. 28. 20. 14. 10

همانگونه که دیده می شود با استفاده از این نوع پربندی زون های هادی الکتریکی بهتر مشخص می شوند.با استفاده از خطوط رنگی و یا طیف رنگی هم بری ها و گسل های اضافی در این نقشه مشخص می گردد .

RS و IP تهیه نقشه های شبه مقاطع و مقاطع مدلسازی شده IP - 3 - 4

شبه مقاطع با برداشت فاکتورهای IP و RS با آرایه دوقطبی – دوقطبی به نحوی که در بند 3-3 ذکر گردید تهیه می شود برای این شبه مقاطع تصحیحات توپو گرافی با استفاده از نرم افزارهای موجود انجام و شبه مقطع خام با توجه به مواردی که برای پربندی نقشه های تغییرات IP و RS ذکر گردید تهیه میگردد ، ارتفاع ایستگاه های مقاطعی که در امتداد آن شبه مقطع تهیه شده در موقع پیاده کردن ایستگاه های پروفیل با G.P.S برداشت می شود همچنین می توان ارتفاع آنها را با تقریب از نقشه های توپو گرافی محاسبه نمود، سپس مقاطع IP و RS برای تعبیر و تفسیر به روش معکوس Inverse (Inverse با استفاده از نرم افزار مدلسازی می شوند، در این مقاطع بررسی آنومالی و محدوده ها آنها انجام شده و با یکدیگر مقایسه می شوند، با تلفیق نتایج بدست آمده با اطلاعات زمین شناسی و ژنوشیمیائی در اغلب موارد محدوده هائی با شارژابیلیته زیاد و مترادف آن با مقاومت الکتریکی کم بعنوان آنومالی های جالب در نظر گرفته شده و محل گمانه های حفاری ، شیب و عمق آنها مشخص می شوند.

4-4- نرم افزارهای مورد استفاده

در تهیه این گزارش و آماده سازی نقشه ها از نرم افزراهای زیر استفاده شده است.

- ترسیم نقشه های سه بعدی ، دو بعدی Surfer 8
 - مدلسازی معکوس Version 3.5 - RES2DINV
 - مقشه موقعیت و مختصات نقاط Map Source

5 - موقعیت منطقه مورد اکتشاف و اطلاعات کلی از زمین شناسی آن

محدوده اکتشافی شمال بزمان در 75 کیلومتری شمال غرب بزمان (فاصله هوائی) جای دارد و از نظر تقسیمات جغرافیائی جزو توابع بخش بزمان از شهرستان ایرانشهر محسوب می شود و از نظر مختصات جغرافیائی بین طول های جغرافیائی "00 که 30 و 30 و 30 ک 2 60 جنوبی و عرض های جغرافیائی "00 که 14 28 و "00 21 38 شرقی قرار گرفته است.

منطقه مزبور بین کوه بزمان در جنوب و شرق دشت سمسور در شمال قرار گرفته است. ارتفاع متوسط آن از سطح آبهای آزاد در حدود 1100 متر می باشد که مرتفع ترین نقطه محدوده اکتشافی با بلندی 1373 متر در جنوب محدوده و پست ترین نقطه آن با ارتفاع 1010 متر در شمال شرق محدوده قرار دارد و اختلاف ارتفاع در محدوده مطالعاتی حدودا" به 100 متر می رسد. توپو گرافی عمومی در بخش های جنوبی، در ارتباط با مناطق ولکانیک بوده و در مرکز منطقه از ارتفاعات کاسته شده و به ترتیب به سمت شمال، مورفولوژی تپه ماهوری است و در دشت سمسور در شمال شرق ، مورفولوژی ویژه مناطق بیابانی را دارا است.

بطورکلی آب و هوای ناحیه خشک و بیابانی است. حداکثر مطلق درجه حرارت ⁶50 درجه سانتیگراد می باشد و میانگین درجه حرارت سالانه 25/6 ، میانگین رطوبتی حدود 31درصد و میزان بارندگی متوسط سالانه 110/1 میلیمتر است. از نظر پوشش گیاهی زمینه های ناحیه از درختچه های کرت، استبرق ، گز و خرزهره بصورت تنک پوشیده شده است.

نزدیکترین مرکز جمعیتی به محدوده مطالعاتی آبادی سمسور با جمعیتی بالغ بر 150 نفر (30 خانوار) می باشند. کشاورزی در این آبادی محدود به باغداری (خرما) و غلات در حد چند هکتار بوده و دامپروری بز، گوسفند و شتر رواج دارد. این آبادی از نظر امکانات رفاهی در حد مناسبی نیست بطوریکه فاقد برق و آب شرب می باشد. مهمترین مرکز جمعیتی به ناحیه مطالعاتی، شهرستان بزمان است. نظر به مجاورت محدوده مطالعاتی به جاده ترانزیتی ایرانشهر – بم ، از نظر راههای ارتباطی از وضعیت خوبی برخوردار است . این محدوده با بزمان و ضعیت خوبی برخوردار است . این محدوده با بزمان 75 کیلومتر و تا بم 205 کیلومتر فاصله دارد. شبکه راههای ارتباطی از نظر منطقه شماره 14 راه های ارتباطی از را نشان می دهد.

ساختار زمین شناسی منطقه به تبعیت از تکتونیک منطقه دارای روند شمال شرق- جنوب غرب می باشد.گسلها بیشتر روند شمال شرق – جنوب غرب دارند و از شکستگی های عمیق پیروی می کنند. دیگرگسل ها و خطواره ها عمدتا "در دو جهت شمالی – جنوبی وگاه شرقی- غربی دیده می شوند. بخشهای شمال ،شمال شرق و جنوب شرق محدوده معدنی توسط رسوبات کواترنر پوشیده شده و بخشهای تپه ماهوری آن فقط بخشهای کوچک لیتولوژی آندزیت و رگه باردار سیلیسی با روند شمال شرق – جنوب غرب می باشد

بیشترین رخنمون سنگی مربوط به شرق محدوده می باشد که شامل آندزیت ،توف (میوسن) و رگه های سیلیسی و بخشهای استوک و رکی و رگچه های سیلیسی کانه دار می باشد. مجموعه های آتشفشانی ترشیری و زون های دگرسانی همراه آنها را رگه های سیلیسی خاصی قطع می نماید که امتداد عمومی همه آنها تقریبا" N45E و شیب آنها70تا تقریبا"90 درجه می باشد .این رگه ها دارای خصوصیات زیر می باشند:

الف)ساخت عموم این رگه ها نواری ظریف بوده وساخت کلوفرم(قلوه ای) از ویژگیهای عمومی آنهاست.

ب)نوارهای این رگه ها از کوارتز ریزدانه تا کلسدون شیری رنگ همراه بانوارهای صورتی شکل آدولاریا تشکیل شده است.

ج)در بسیاری ازاین رگه ها ساختارحفره ای با کوارتزهای شکل دارکه از دو طرف به سمت داخل حفره ها رشد کرده اند دیده می شود.

د)ساخت های Cockadeیا تاج خروسی که در اطراف قطعات زاویه دار پروپلیتی بصورت نواری تشکیل شده است.

ه)ساخت رگه ای درهم (Stock work)در بسیاری از موارد دیده می شود.

خاصی ندارد.

رگه های بار دار سیلیسی سولفیددار در بخش جنوب غرب محدوده به ضخامت های 30 سانتی متر الی 3 متر در پهنای حدود 700 متر به موازات و توالی هم داخل واحدهای دربر گیرنده آندزیتی و توف در راستای شمال شرق-جنوب غرب در سطح رخنمون دارند و در بخشهای شمال شرق محدوده با گسترش کمتر یعنی حداکثر 2 رگه به ضخامت حداکثر 1 متر در پهنای حدود 5 متر داخل واحدهای آلتره آندزیتی رخنمون دارند.ولی در بخشهای ابتدایی،مرکزی و انتهایی محدوده اکتشافی بعلت تکتونیزه وگسل خوردگی ،پیوستگی رگه ها بهم خورده و یا اینکه گاها" توسط رسوبات کواترنر یوشیده شده است.

آلتراسیون آرژیلی بیشتر محدود به اطراف رگه سیلیسی می باشد که در بعضی جاها تقریبا" وسعت آلتراسیون در اطراف رگه متقارن می باشد ودر برخی جاها فقط یک سمت آلتراسیون مشاهده می شود و طرف دیگر ،آلتراسیون بسیار ناچیز می باشد. برای آلتراسیون پروپلیتی مشابه آلتراسیون آرژیلی می باشد و وسعت آلتراسیون در اطراف رگه نظم و در نهایت می توان گفت که ماده معدنی بصورت رگه سیلیسی و گاها" رگچه های سیلیسی می باشد که داخل واحد سنگی در برگیرنده آندزیتی و توف همراه با آلتراسیون آرژیلی وپروپلیتی جایگزین شده و با روند شمال شرق – جنوب غرب رخنمون دارد که در بخش شمال شرق بیشتر بصورت تپه ماهوری و با میزان رخنمونی محدود و آلتراسیون آرژیلی وپروپلیتی محدودتر می باشد بیشترین رخنمون و گسترش آن مربوط به بخش جنوب غرب می باشد که بخشهای مرتفع محدوده را شامل می شود . در این منطقه علاوه بر رگه اصلی ،ر گچه هایی بصورت استو ک ورک هم مشاهده می شود که میزان و وسعت محدوده کانه زایی را افزایش داده است و همچنین از عیار بالاتری برخوردار می باشد.بطور کلی از دو ترانشه ایکه در بخش جنوب غرب ،به طولهای 80 و 100 متر حفر شده برای پهنای میانگین 15 متر و طول حدود 800 متر ،عیار عنصر طلا 2 گرم در تن می باشد. که مربوط به رگه ور گچه های سیلیسی باردار می باشد. ولی در بخش شمال شرق محدوده، از 14 ترانشه به طولهای حدود 30 تا 45 متری که حفر شده ،برای پهنای حدود 5 متر وطول گسترشی حدود مربوط به رگه ور گچه های سیلیسی باردار می باشد. ولی در بخش شمال شرق محدوده، از 14 ترانشه به طولهای حدود 5 متر وطول گسترش می باشد. ولی در بخش شمال شرق محدوده از 14 ترانشه می باشد. که مربوط به رگه میر تول گاه می باشد. که مربوط به رگه سیلیسی و بخش آلتره

شکل شماره A2 نقشه زمین شناسی منطقه را با مقیاس 1/10/000 ارائه می دهد ، همچنین شکل شماره A3 عکس های متفاوتی از رگه های سیلیسی ، ترانشه های حفاری شده و نمای عمومی منطقه را نشان می دهد و بالاخره در شکل شماره A4 عکس های هوائی از این منطقه ارائه شده است.

6 – مطالعات قبلی انجام شدہ

مطالعات و بررسی هائی که تا آخر اسفند ماه 1386 در منطقه انجام شده بشرح زیر است.

- تهیه نقشه زمین شناسی معدنی منطقه با مقیاس 1/5000 که در مراحل پایانی است.
- نقشه توپو گرافی 1/1000 ، برداشت های صحرائی انجام شده و تهیه نقشه در مراحل پایانی است.
- نقشه زمین شناسی منطقه با مقیاس 1/5000 سازمان زمین شناسی و اکتشافات معدنی
 کشور
- نقشه زمین شناسی منطقه با مقیاس1/20/000 طرح اکتشاف مواد فلزی در شمال بزمان
- نقشه زمین شناسی منطقه با مقیاس 1/250/000 (چهار گوش ایرانشهر) سازمان زمین
 شناسی و اکتشافات معدنی کشور
- نقشه زمین شناسی منطقه با مقیاس 1/100/000 (چهار گوش بزمان) سازمان زمین
 شناسی و اکتشافات معدنی کشور
 - انجام تعداد 33 ترانشه و برداشت 700 نمونه از ترانشه ها
 - برداشت 50 نمونه از سنگ ها از منطقه 2
 - برداشت 550 نمونه از 9 ترانشه حفر شده

بخش دوم:

بررسى نتايج مطالعات ژئوفيزيك

در محدوده معدنی بزمان

۷ – بررسی نتایج بدست آمده در محدوده معدنی بزمان

با توجه به نقشه زمین شناسی این منطقه (شکل شماره A2) رگه های سیلیسی با امتداد شمال شرق – جنوب غرب و با شیب ° ۷۰ تا °90دارای رخنمون می باشند.برای برداشت داده ها و زیر پوشش قرار دادن محدوده این رگه ها، مطالعات منطقه در دو قسمت Z1 و Z2 در نظر گرفته شد، منطقه Z1 در محدوده ای با طول حدود ۲/۲ کیلومتر و عرض • • ۴ متر و منطقه Z2 در محدوده ای با طول ۲/۷ کیلومتر و پهنای • • ۳ متر زیرپوشش مطالعات ژئوفیزیک قرار گرفت، لازم به توضیح است که ابعاد مناطق مورد مطالعه ابتدا کمتر از ارقام ذکر شده بود ولی بعلت وجود آنومالی و برای محدود کردن آنها مطالعات با ارائه نتایج تفسیرها و پیشنهادهای مشاور و تائید کارفرما ادامه پیدا کرده است ،در این منطقه کلا" 3660 اندازه گیری IP و RS انجام گرفته است ، نتایج مطالعات برای هر یک از این مناطق جداگانه مورد تعبیر و تفسیر قرار می گیرد.در نقشه زمین شناسی (شکل شماره A2 یک از این مناطق جداگانه مورد تعبیر و تفسیر قرار می گیرد.در نقشه زمین شناسی (شکل شماره A2) محدوده های Z1 و Z2 که رگه های سیلیسی را در بر می گیرد نشان داده شده است.

${f Z}_1$ بررسی نتایج حاصله در زون شماره -7

در نقشه شماره 1-Bzı (Configuration Map) موقعیت خط مبنا ، مقاطع ، ایستگاه های اندازه گیری، محدوده شبه مقاطع ، ترانشه ها و کلیه اطلاعات دیگر از جمله محل گمانه های اکتشافی ارائه گردیده است. نتایج برداشت داده ها بصورت نقشه های تغییرات مقاومت الکتریکی ، تغییرات شارژابیلیته،نقشه های شبه مقاطع خام و مقاطع مدلسازی شده پیوست گزارش می باشد.

لازم به توضیح است که در نقشه موقعیت، رگه های سیلیسی با رنگ قرمز از نقشه زمین شناسی برداشت گردیده و از طرف دیگر ترانشه هائی که در مسیر رگه های سیلیسی حفر گردیده با G.P.S برداشت گردیده و نتیجتا" اختلافی بین محدوده رگه های سیلیسی برداشت شده توسط گروه ژئوفیزیک و زمین شناسی وجود دارد، بنظر می رسد که محل رگه های سیلیسی در نقشه زمین شناسی از روی عکس های هوائی برداشت گردیده است و احتمال جابجائی آن وجود دارد. 2-Bz1 - بررسى نقشه تغييرات مقاومت الكتريكي (RS) نقشه شماره 2-Bz1

در این نقشه تغییرات مقاومت الکتریکی منطقه نشان داده شده است، لازم به ذکر است که چون تفکیک رگه های سیلیسی با توجه به مقاومت الکتریکی زیاد آنها که می تواند بصورت آنومالی مقاوم الکتریکی ظاهر گردد مورد توجه بوده لذا داده های روش مقاومت سنجی و تغییرات مقاومت الکتریکی منطقه در مرحله اول مورد بررسی قرار گرفته است.

با توجه به نقشه دیده می شود که طیف تغییرات مقاومت الکتریکی بین 10 اهم متر تا بیشتر از 500 اهم متر است، این طیف وسیع بعلت وجود زون های آرژیلی با مقاومت الکتریکی کم و همچنین رگه های سیلیسی با مقاومت زیاد می باشد، در این نقشه آنچه مورد توجه است تفکیک زون های مقاوم الکتریکی است، این زون ها بصورت رگه هائی متفاوت در امتداد تقریبی E N44 تا E با مقاومت الکتریکی زیاد در نقشه قابل تفکیک می باشند .برای بررسی مشخصات این رگه ها این زون در دو بخش جنوبی و شمالی مورد بررسی قرار می گیرد.

بخش جنوبی بین ایستگاه های 0 تا 300 از هر مقاطع قرار گرفته و بخش شمالی بین ایستگاه های 300 تا 600 واقع شده است . در بخش جنوبی آنومالی های مقاوم الکتریکی (محورهای آنومالی) از غرب به شرق بصورت زیر تفکیک گردیده اند.

محور آنومالی شماره AXE I ، این محور بین مقاطع 45- تا 5- بین ایستگاه های 100 تا 250 واقع شده و طول آن 400 متر است، مرکز آنومالی در مقطع 15- و در ایستگاه 200 واقع شده است ، این آنومالی از طرف جنوب غرب منطقه محدود نشده و کلا" در محدوده آبرفتی قرار گرفته است ، با توجه به نقشه احتمالا"این محور آنومالی ، ادامه محور آنومالی II AXE در جهت غرب می باشد که بوسیله گسل F1 در آن جابجائی نیز صورت گرفته است.

محور آنومالی شماره AXE II ، این محور بین مقاطع 00 تا 85 واقع شده و طول
 آن 850 متر است ، این آنومالی دارای مراکزی در مقاطع 10 ، 15 ، 40 ، 50 و 75 می باشد
 دادامه احتمالی این محور آنومالی در جهت شرق نیز ردیابی گردیده و با خط چین مشخص
 گردیده است آثار احتمالی این رگه بصورت محدوده هائی با مقاومت الکتریکی نسبتا" زیاد
 در نقشه قابل ردیابی است ، این قسمت از محور بعد از مقطع 10 ملا AXE II بصورت یک رگه
 گرفته است . می توان گفت که مجموع محور I AXE II محدورت یک رگه

سیلیسی از مقطع 45- تا مقطع 160 می باشد که توسط گسل های F1 تا F7 قطع شده و بوسیله عملکرد آنها و تغییر مسیرهای محلی در آن صورت گرفته است .آثاری از این رگه در مقطع 125 ایستگاه های 200 در سطح زمین دیده می شود که ترانشه ای نیز در آن حفر گردیده است.این رگه با شماره V3 در نقشه مشخص شده است.

محور آنومالی AXE III ، این محور آنومالی بین مقاطع 20 تا 100 قرار دارد که
 از طرف جنوب غرب و در محدوده مقطع شماره 20 توسط گسل F2 متوقف شده است
 مطول آن 800 متر و در مقاطع 45 ، 50 و 85 دارای مراکزی است.

ادامه این آنومالی از طرف شمال شرق به زون های مقاوم الکتریکی دیگری بر خورد میکند که در زیر پوشش آبرفتی قرار دارند، بهمین جهت شاید بدلیل وجود آبرفت های دانه ریز مقاومت ظاهری اندازه گیری شده نسبتا" کم می باشد ولی آثار این رگه های سیلیسی بصورت ازدیاد نسبی مقاومت الکتریکی ظاهر شده است، ضمن اینکه باید در نظر داشت وجود زون های آبرفتی دانه درشت نیز می تواند عامل این نوع آنومالی ها باشد ولی شرایط زمین شناسی و ادامه رگه های سیلیسی که آثاری از آن که در مقطع 115 و در ایستگاه 100 تا 120 دیده شده و ترانشه ای نیز در آن حفر گردیده دلیل قانع کننده ای بر وجود احتمالی رگه های سیلیسی است، زون مقاوم الکتریکی بین مقاطع 120 تا 175 واقع شده و مقیاس رنگ محدوده آنها را بخوبی مشخص می کند ، این زون ها بصورت محورهای آنومالی دارای مشخصات زیر می باشند.

محور آنومالی <u>AXE IV</u> ، این محور آنومالی بین مقاطع 115 و 165 واقع شده و دارای مرکزی در مقطع 125 ایستگاه 20 می باشد.ادامه این رگه در جهت شرق و غرب نیز ردیابی شده و با خط چین مشخص گردیده است این رگه در نقشه با شماره V1 نشان داده شده است.

محور آنومالی <u>AXE V</u> ، این محور آنومالی محدوده بین مقاطع 120 تا 175 واقع شده است ، با توجه به نقشه، محورهای III و <u>V</u> را می توان بصورت یک رگه بزرگ از مقطع 20 تا 175 در نظر گرفت.این رگه با شماره 22 در نقشه مشخص گردیده است.
 در بخش شمالی نقشه ، محورهای آنومالی با مشخصات زیر تفکیک گردیده است:

- محور آنومالی شماره AXE <u>VI</u>، این محور آنومالی بین مقاطع 45- و 00 واقع شده طول آن 450 متر است که از طرف جنوب غرب محدود نشده است، مراکز آنومالی درمقاطع 25- و 5- واقع شده است این آنومالی بطور کامل در زیرپوشش آبرفتی قرار دارد .ادامه این محور آنومالی را تا محدوده مقطع 100 می توان با توجه به تغییرات مقاومت الکتریکی ردیابی نمود که با خط چین در نقشه مشخص گردیده است.

- محور آنومالی شماره VII AXE این محور بین مقاطع 10 تا 50 قرار گرفته و طول آن 400 متر می باشد، مرکز آنومالی در مقطع 45 قرار گرفته است.ادامه این محور در جهت غرب و شرق نیز با توجه به تغییرات مقاومت الکتریکی ردیابی گردیده و با خط چین مشخص گردیده است، همانگونه که در نقشه دیده می شود این رگه بین مقاطع 15- تا 175 واقع شده و قسمت های شرقی آن در زیرپوشش آبرفتی قرار دارد، این محور آنومالی بوسیله گسل های F1 تا F7 قطع گردیده و تغییراتی در امتداد آن در اثر عملکرد گسل ها پدید آمده است این رگه در نقشه با شماره V4 مشخص گردیده است.
- محور آنومالی شماره <u>VIII</u> این محور آنومالی بین مقاطع 95 تا 135 واقع شده
 است طول این محور 400 متر می باشد، مراکز آنومالی در مقاطع 100 ، 105 و
 120 واقع شده است.با توجه به نقشه می توان این محور آنومالی را ادامه محور
 آنومالی <u>IV</u> AXE دانست و مجموعه محور <u>IV</u> و <u>III</u> را یک رگه بزرگ در
 نظر گرفت.این رگه با شماره V5 در نقشه مشخص گردیده است.

با توجه به تغییرات خطوط هم مقاومت الکتریکی گسل های متعددی در این زون ردیابی شده است که با حروف F1 تا F7 در نقشه نشان داده شده است ، امتداد این گسل ها شمال شرقی – جنوب غربی است، برخی از این گسل ها بصورت شکستگی هائی هستند که عملکرد آنها در بعضی رگه های سیلیسی بصورت تغییر امتداد آنها می باشد. 3-Bz1 - بررسی نقشه تغییرات شارژابیلیته (IP) نقشه شماره 3-Bz1

در این نقشه تغییرات شارژابیلیته منطقه نشان داده شده است ، طیف تغییرات آن بین 2mv/v تا 18mv/v می باشد، با توجه به نقشه دیده می شود که در این محدوده مقدار شارژابیلیته در قسمت شمال – غرب منطقه به حداکثر 18mv/v می رسد، مقدار شارژابیلیته در نقاط دیگر بین 2mv/v و حداکثر 10mv/v اندازه گیری شده است و می توان گفت که مراکزی که مقدار شارژابیلیته نسبتا" زیاد است بصورت پراکنده بوده و محور آنومالی که مطابق با محورهای آنومالی مقاوم الکتریکی و در رابطه با رگه های سیلیسی باشد بصورت بارز مشاهده نمی شود و برای دادن ارتباطی بین تغییرات شارژابیلیته و رگه های سیلیسی محورهای آنومالی های RS در این نقشه آورده شده و می توان برخی تغییرات شارژابیلیته را که بصورت بسیار ضعیفی و در حد v/v تا v زیاد می گردد مشخص نمود که مطابقت با محورهای آنومالی RS دارد، لذا محدوده رگه های V زیاد می گردد مشخص نمود که مطابقت با محورهای آنومالی RS دارد، ناما محدوده رگه های V زیاد می گردد مشخص نمود که مطابقت با محورهای آنومالی RS دارد، دا محدوده رگه های V

در محدوده رگه شماره V1 مقدار شارژابیلیته عموما" بین 7mv/v تا 8mv/v متغیر
 است ولی در مقاطع 140 تا 155 مقدار آن زیادتر شده و دو مرکز در آن مشخص گردیده
 است، مرکز اول در مقطع 145 ایستگاه 60 واقع شده و مقدار شارژابیلیته به 11mv/v می
 رسد، مرکز دوم در مقطع 150، ایستگاه 60 قرار دارد که حداکثر شارژابیلیته به 11mv/v
 می رسد.

در محدوده رگه شماره V2 که بین مقاطع 10 و 175 واقع شده است مقدار شارژابیلیته بین 5mv/v تا 12mv/v متغیر است که عمدتا" این تغییرات بین شارژابیلیته بین 5mv/v می باشد، در طول این رگه در دو قسمت مقدار شارژابیلیته کمی زیاد است که عبارتند از محدوده ای واقع بین مقاطع 10 و 40 که مقدار شارژابیلیته شارژابیلیته به حداکثر v10mv/v در مقطع 35، ایستگاه 40 می باشد که مطابقت کامل با رگه سیلیسی برونزد دارد و ترانشه ای نیز در آن حفر گردیده است، محدوده ای دیگر در بین مقاطع 10 و 100 که مقدار کامل با رگه سیلیسی برونزد دارد و ترانشه ای نیز در آن حفر گردیده است، محدوده دیگر در بین مقاطع 10 و 100 می باشد که مطابقت دیگر در بین مقاطع 10 واقع می باشد که حداکثر شارژابیلیته برابر دیگر در بین مقاطع 10 و 100 تا 155 واقع می باشد که حداکثر شارژابیلیته برابر دیگر در مقطع 100 و 100 ندازه گیری شده است.

در محدوده رگه شماره V_3 که از مقطع 45- تا 160 ادامه دارد مقدار شارژابیلیته بین - Smv/v تا 11mv/v تا 5mv/v متغیر است با توجه به نقشه این تغییرات از غرب به شرق بصورت زیر است.

در محدوده مقاطع 45- تا 00 مقدار شارژابیلیته بین 8mv/v تا 11mv/v می باشد ولی در فاصله مقاطع 40- تا 30- مقدار آن کمی زیادتر شده و مرکزی با شارژابیلیته 11mv/v در مقطع 35- ایستگاه 160 مشخص شده که مطابقت کاملی با رگه های سیلیسی در این قسمت دارد .

در محدوده مقاطع 00 تا 60 مقدار شارژابیلیته بین 6mv/v تا 7mv/v متفاوت است. در محدوده مقاطع 60 تا 75 مقدار شارژابیلیته کمی زیادتر شده و مرکزی با شارژابیلیته 9mv/v در مقطع 70، ایستگاه 160 مشخص گردیده است.

در محدوده مقاطع 75 تا 140 مقدار شارژابیلیته بین 4mv/v تا 6mv/v می باشد. در محدوده مقاطع 140 تا 160 که ادامه رگه در زیر آبرفت ها احتمال داده می شود مقدار شارژابیلیته زیاد شده و به حداکثر 15mv/v می رسد در این فاصله دو مرکز آنومالی شارژابیلیته در مقاطع 145 و 155 مشخص شده است که بترتیب دارای شارژابیلیته 11mv/v و 15mv/v می باشند ، متذکر می گردد که محور آنومالی شارژابیلیته مطابقت نسبی با رگه سیلیسی دارد ضمن اینکه ازدیاد شارژابیلیته میتواند در اثر وجود عدسی های رسی در داخل آبرفت ها نیز باشد.

در محدوده رگه شماره V4 که بین مقاطع 10 و 175 واقع شده تغییرات شارژابیلیته بین v/v تا 5mv/v متغیر است ، این تغییرات بصورت زیر است.
 در فاصله مقاطع 10 تا 30 مقدار آن بین mv/v تا 6mv/v می باشد.
 در فاصله مقاطع 10 تا 30 مقدار آن بین w/v 6mv تا 0mv/v می باشد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته به wv/v می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته به wv/v می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته به wv/v می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته به wv/v می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته به vv/v می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته بین v/v 6mv می رسد.
 در فاصله مقاطع 30 تا 30 مقدار شارژابیلیته بین v/v 6mv می رسد.

در محدوده رگه شماره V5 که بین مقاطع 45 و 140 واقع شده تغییرات
 شارژابیلیته بین مقاطع 45 تا 10 به حداکثر 17mv/v می رسد. با توجه به نقشه
 دیده می شود که مقدار شارژابیلیته بین مقطع 45 تا 20 نسبتا" زیاد است و محور

آنومالی شارژابیلیته با رگه ردیابی شده کاملا" مطابقت می کند و این ازدیاد شارژابیلیته به احتمال زیاد در رابطه با رگه های سیلیسی سولفید دار است، با توجه به اینکه این رگه دارای پوشش آبرفتی است و مقدار مقاومت الکتریکی زیاد است لذا نمی تواند در ارتباط با زون ها یا عدسی های رسی باشد چه در صورت وجود زون های رسی مقدار مقاومت الکتریکی کم بوده در صورتیکه مقدار مقاومت الکتریکی زیاد و مقدار شارژابیلیته نیز زیاد است، در بقیه نقاط این رگه تا مقطع 140 مقدار شارژابیلیته 4mv/v تا 4mv/v متغیر است.

با توجه به تفسیرهای انجام شده از نقطه نظر تغییرات شارژابیلیته دیده می شود که در محدوده هائی از رگه های مشخص شده مقدار شارژابیلیته نسبتا" زیاد است ولی جز در قسمت غرب منطقه و محدوده رگه های شماره 4 و با شدت کمتر در محدوده رگه شماره 3 آنومالی IP بصورت بارز که بصورت محور آنومالی IP اطلاق شود مشخص نشده است ولی بهر روی زون هائی با شارژابیلیته نسبتا" زیاد با محدوده رگه های ردیابی مطابقت کامل و یا نسبی دارد.

۷ – ۱ – ۳ – بررسی شبه مقاطع

برای تعیین گستره آنومالی های مقاوم الکتریکی در عمق در مقاطع 15-، 35، 55، 55 و 105 و در محدوده مراکز آنومالی های مقاوم الکتریکی اقدام به تهیه شبه مقطع گردید، در هر شبه مقطع تصحیح توپوگرافی نیز انجام شده است ، در این شبه مقاطع محدوده برداشت ها و مختصات ابتدا و انتهای مرکز خط جریان AB نشان داده شده است، پس از تهیه شبه مقاطع خام با تصحیح توپوگرافی با استفاده از نرم افزار RES2DINV اقدام به تهیه مقاطع مدلسازی IP و RS گردیده است ، در با استفاده از نرم افزار تسبه مقاطع مدلسازی IP و RS گردیده است ، در تفسیرهای انجام شده و نتیجه گیری از این شبه مقاطع از مقاطع مدلسازی استفاده شده است لازم به توضیح است که برای هر شبه مقطع یک نقشه شبه مقطع خام با تصحیح توپوگرافی، یک نقشه مدلسازی شده IP و RS که کلیه تفسیرها بر مبنای آن انجام گرفته و یک نقشه مدلسازی شده با مشخصات نرم افزارهای استفاده شده ارائه گردیده است ، پس از تلفیق نتایج با اطلاعات زمین شناسی و بحث و تبادل نظر با کارشناس زمین شناس منطقه محل گمانه های اکتشافی در مقاطع مدلسازی شده با RS و مشخصات آنها شامل آزیموت، شیب ، طول حفاری و مختصات نقطه محل حفاری ارائه گردیده است ، موقعیت و مشخصات شبه مقاطع برداشت شده در جدول زیر آورده شده و سپس نتایج تفسیرهای انجام شده ارائه گردیده است ، پس از تلفیق نتایج با اطلاعات زمین شناسی و بحث و تبادل نظر با کارشناس زمین شناس منطقه محل گمانه های اکتشافی در مقاطع مدلسازی شده تفسیرهای انجام شده ارائه گردیده است.

جهش ایستگاهی	AB=MN=a	محدوده نقاط اندازه گیری	شماره مقطع	رديف
20 متر	20 متر	125 تا 690	-15	1
20 متر	40 متر	60- تا 270	35	2
20 متر	20 متر	35- تا 455	55	3
20 متر	20 متر	75- تا 465	75	4
20 متر	20 متر	245 تا 565	105	5

موقعیت و مشخصات شبه مقاطع برداشت شده در زون Z1 در محدوده بزمان

- بررسی شبه مقطع 15- نقشه های شماره 4-Bzı ، 4-Bzı و 21 4-B

این شبه مقطع بمنظور بررسی آنومالی های RS واقع در محورهای AXE I و AXE I انجام گرفته است، اندازه گیری ها از ایستگاه 125 تا 600 برداشت شده است، زون های آنومالی انجام گرفته است، اندازه گیری ها از ایستگاه 200 تا 600 برداشت شده است، زون های آنومالی بین ایستگاه های 170 تا 220 (از محور I محور AXE I) و ایستگاه های 550 تا 600 (از محور آنومالی AXE I) واقع شده که موقعیت آنها در شبه مقطع و مقطع مدلسازی شده نیز نشان داده شده است، نتایج بصورت شبه مقطع حام با تصحیح توپو گرافی در نقشه شماره B2-4 و مقطع مدلسازی شده در نیا جهش نتایج بصورت شبه مقطع خام با تصحیح توپو گرافی در نقشه شماره B2-4 و مقطع مدلسازی شده در با جهش نقشه شماره AXE II و مقطع مدلسازی شده در با جهش نقشه شماره AXE II و مقطع مدلسازی شده در با جهش ایشه شماره B2-4 ارائه گردیده است، مشخصات شبه مقطع 20 هماهده نشده و شبه مقطع در رابطه ایستگاهی 20 متر می باشد، در طول این مقطع آثار رگه سیلیسی مشاهده نشده و شبه مقطع در رابطه با محورهای آنومالی RS A که در نقشه شماره IZ-30 متر و دارای پوشش آبرفتی است مقطع در رابطه با محورهای آنومالی RS A که در نقشه شماره RXE I و مقطع در رابطه ایستگاهی 20 متر می باشد، در طول این مقطع آثار رگه سیلیسی مشاهده نشده و شبه مقطع در رابطه تهیه به مدر این آبره ای 23-2 تو بوش آبرفتی است مشاهده نشده و مدادی پوشش آبرفتی است محورهای آنومالی RS A که در نقشه شماره IZ-30 متر می باشد، در طول این مقطع اثار رگه سیلیسی مشاهده نشده و شبه مقطع در رابطه تهیه گردیده است.

در شبه مقطع خام با تصحیح توپو گرافی "نقشه شماره Bzı-4" دو زون آنومالی مقاوم الکتریکی بین ایستگاه های 160 تا 230 و 580 تا 650 با شیبی بطرف شمال غرب ظاهر شده است، آنومالی دیگری نیز از نقطه 650 شروع شده که بطرف شمال غرب ادامه داشته و محدود نشده است، در شبه مقطع خام شارژابیلیته مقدار شارژابیلیته بین 2.5mv/v تا 15.5mv/v متغیر است دو مرکز بی هنجاری در محدوده آنومالی های RS در ایستگاه های 210 تا 200 و 620 تا 650 مشخص گردیده است.

در مقطع مدلسازی شده(نقشه شماره 4-Bzr)، دو زون آنومالی RS در محدوده ایستگاه های 185 تا 230 و 565 تا 600 مشخص گردیده است که در محدوده محورهای آنومالی RS ، 185 محدوده این محورها دارد، در مقطع مدلسازی شده AXE I و AXE <u>VII</u> قرار گرفته و مطابقت کامل با این محورها دارد، در مقطع مدلسازی شده گسترش آنومالی ها در عمق مشخص شده است، همبری های F1 ، F2 ، F3 و F4 محدوده این آنومالی ها را که میتوان مترادف با یک رگه سیلیسی دانست نشان می دهد، با توجه به نقشه و فرم آنومالی ها این رگه ها دارای شیبی به شمال غرب می باشند.

در مقطع مدلسازی شده IP زون های آنومالی متعددی بصورت پراکنده ظاهر شده ولی در محدوده آنومالی AXE I دو مرکز آنومالی IP و در محدوده آنومالی AXE <u>VII</u> نیز یک محدوده آنومالی IP ظاهر گردیده است که مطابقت خوبی با آنومالی RS دارند، آنومالی IP در رابطه با آنومالی AXE <u>VII</u> دارای گسترش بطرف شمال غرب بوده و به یک زون وسیع آنومالی IP تبدیل می شود که در همین منطقه افت مقاومت الکتریکی تا کمتر از 50 اهم متر می رسد و احتمالا" این آنومالی در رابطه با زون آرژیلی می باشد.

همانگونه که گفته شد در محدوده آنومالی های RS هیچگونه رخنمونی از رگه های سیلیسی مشاهده نمی شود و محدوده عمدتا" از آبرفت ها پوشیده شده است ولی با توجه به نقشه زمین شناسی دیده می شود که احتمالا" این آنومالی ها در رابطه با ادامه رگه های سیلیسی که دارای برونزد می باشند بوده و دارای پوشش آبرفتی هستند.دو گمانه اکتشافی با مشخصات زیر در طول این شبه مقطع برای شناسائی این آنومالی ها پیشنهاد می شود.

Y	X	شيب	آزيموت	طول	نقطه	مقطع	رديف
				حفاري			
3136765	792604	50°nw	N137°e	40 متر	195	15	BH1
3137028	792320	75°se	N137°e	60 متر	595	15	BH2

- بررسی شبه مقطع 35 نقشه های شماره Bz1 ، 5-Bz1 و 5-B^rz1 و 5-B^rz1

در طول این شبه مقطع، زون آنومالی مقاوم الکتریکی RS ، محور AXE II بین نقاط 80 تا 140 و محور AXE III بین نقاط 0 و 50 مورد بررسی قرار گرفته است، شبه مقطع بین نقاط 60- تا 270 با مشخصات AB=MN=40 متر و جهش ایستگاهی 20 متر برداشت گردیده است، نقشه شمارهS-Bz1 شبه مقطع خام با تصحیح توپوگرافی را نشان می دهد، در این شبه مقطع در فاصله نقاط 0 تا 140 ، زون مقاوم الکتریکی ظاهر گردیده و محدوده آنومالی های RS شامل محورهای نقاط 0 تا AXE II ، زون مقاوم الکتریکی ظاهر گردیده و محدوده آنومالی های RS شامل محورهای AXE II محدوده توچکی بصورت آنومالی IP نسبتا" قوی در فاصله نقاط 10 تا 30 تفکیک گردیده است ولی کلا" در منطقه آنومالی RS مقدار شارژابیلیته بین نقاط 0 تا 100 نفکیک گردیده است ولی کلا" در منطقه آنومالی RS مقدار شارژابیلیته بین نقاط 0 تا 100 نفکیک گردیده است ولی کلا"

درمقطع مدلسازی شده RS زون مقاوم الکتریکی بین نقاط 20- تا 100 قرار گرفته است، محدوده بین نقاط 40- تا 20 بصورت یک زون مقاوم الکتریکی که دارای شیبی بطرف جنوب شرق می باشد مشخص شده است ، همبری یا گسل های F1 و F2 محدوده آن را تعیین می کند، محدوده دیگر بصورت رگه تقریبا" عمودی بین نقاط 60 تا 100 که ارتفاعات را تشکیل می دهد در مقطع مدلسازی شده، ظاهر گردیده است و با محور آنومالی AXE II مطابقت کامل دارد، محدوده مقاوم الکتریکی بین نقاط 20 تا 60 می تواند در رابطه با واریزه های دامنه ای باشد زیرا دارای ریشه نبوده و در عمق به زون هادی الکتریکی محدود می شود.

در مقطع مدلسازی شده IP در محدوده رگه های مقاوم الکتریکی یاد شده، مقدار شارژابیلیته نسبتا" زیاد است که می تواند در اثر وجود زون های با شدت مینرالیزه کم در ارتباط باشد، در این مقطع مدلسازی شده نیز همبری یا گسل های F1 ، F2 ، F1 و F4 محدوده زون های با شارژابیلیته نسبتا" زیاد را نشان می دهد و مطابقت خوبی بین دو مقطع مدلسازی شده RS و IP وجود دارد، مقدار Error=20.6 می باشد. با تلفیق کلیه اطلاعات، انجام یک گمانه اکتشافی با مشخصات زیر پیشنهاد می شود.این گمانه اکتشافی دو زون مقاوم الکتریکی را قطع کرده و مشخصات آن را بدست خواهد داد.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
45°se	N137°e	120 متر	3136974	793106	-20	35	BH3

- بررسی شبه مقطع 55 نقشه های شماره 6-Bz1 ، 6-Bz1 و 21 6-B

این شبه مقطع بمنظور بررسی آنومالی های RS در ارتباط با محورهای AXE II و AXE II و RS و RS در این شبه مقطع بمنظور بررسی آنومالی های RS از AXE II) قرار دارند انجام گرفته است، که در بین نقاط 20 تا 60 (AXE III) و 100 تا 170 (AXE II) قرار دارند انجام گرفته است، محدوده این آنومالی ها در شبه مقطع و مقطع مدلسازی شده نیز آورده شده است ، اندازه گیری شبه مقطع از نقطه 35- تا 455 انجام شده است.مشخصات شبه مقطع 20=AB=MN متر و جهش ایستگاهی آن 20 متر بوده است.

در نقشه شماره Bz1 شبه مقطع خام با تصحیح توپو گرافی ارائه گردیده است، همانگونه که در نقشه دیده می شود آنومالی RS بین نقاط 100 تا 170 مطابق با آنومالی AXE II در شبه مقطع ظاهر گردیده است ، در محدوده آنومالی RS ،(AXE III)، مقدار مقاومت الکتریکی نسبتا" کم بوده و بصورت یک رگه سیلیسی نمی توان آن را تفکیک نمود، در شبه مقطع خام IP آنومالی IP در محدوده نقاط 50 تا 155 که در عمق ادامه دارد با حداکثر شدت شارژابیلیته 11.5mv/v مشخص گردیده است ، در سایر نقاط محدوده های پراکنده ای با شارژابیلیته 11mv/v نیز ظاهر گردیده است. در محدوده آنومالی AXE III مقدار شارژابیلیته 11mv/v نیز ظاهر گردیده است.

در نقشه شماره 6-Bźz مقطع مدلسازی شده ارائه گردیده است ، در مقطع مدلسازی شده RS آنومالی RS بین نقاط 90 تا 140 تفکیک شده و با انطباق نسبی با زون آنومالی RS که دارای شیبی بطرف جنوب شرق است دارد، همچنین یک آنومالی در عمق و در فاصله نقاط 140 تا 180 که میبی بطرف جنوب شرق است دارد، همچنین یک آنومالی در عمق و در فاصله نقاط 140 تا 180 که بصورت قائم و در محدوده آنومالی II AXE اواقع شده تفکیک گردیده است، محدوده آنومالی (AXE III) در ارتباط با آنومالی است که بین نقاط 0 تا 40 تفکیک شده و گسترش آن در عمق مشخص گردیده است ، همبری های F1 ، F2 ، F3 ، F2 و F5 محدوده آنومالی های RS را نشان می دهد.

در مقطع مدلسازی شده IP یک زون آنومالی IP در فاصله نقاط 0 و 40 و مطابق با آنومالی RS در مقطع مدلسازی شده مشخص گردیده است ، همبری های F1 و F2 محدوده آن را مشخص می کند، در فاصله نقاط 80 تا 120 نیز آنومالی IP ردیابی شده است، این آنومالی بطرف شمال غرب ادامه داشته و در فاصله نقاط 180 و 260 دارای گسترش می باشد، آنومالی IP در محدوده II محدوده II از نظر شیب با آنومالی RS مطابقت نمی کند ولی قسمت های سطحی آن مطابقت با آنومالی IP و AXE II در محدوده II دامالی IP و محدوده II دامالی IP در محدوده II در محدوده II دامالی AXE II در محدوده II دامالی IP در محدوده II دامالی IP در محدوده II دامالی IP دارای IP دامالی IP دارای IP دارای IP دارای IP در محدوده II دامالی IP در محدوده II دامالی IP دارای IP دارای IP دارای IP دارای IP دارای IP دارالی II در محدوده IP دارالی II در محدود II دامالی IP دارای IP دارالی IP دارالی II در محدود II دامالی IP دارالی II در محدود II دامالی IP دارالی II دامالی IP دارالی IP دارالی II در محدود II دامالی IP دارالی II دامالی II دامالی II دامالی II دارالی II دامالی II در محدود II دامالی II دارالی II دامالی II د در رابطه با آرژیلی شدن سنگ ها و یا زون های رسی داخل آبرفت ها می تواند باشد، رگه سیلیسی در فاصله نقاط 110 تا 125 دارای رخنمون می باشد و ادامه گستره آن در عمق مشخص گردیده است ، با توجه به زمین شناسی محدوده دو گمانه حفاری با مشخصات زیر پیشنهاد می گردد.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
75°nw	N137°e	75 متر	3137130	793228	0	55	BH4
60°nw	N137°e	100 متر	3137198	793156	100	55	BH5

- بررسی شبه مقطع 75 نقشه های شماره 7-Bz1 ، 7-Bz1 و 7-B⁻z1 -

این شبه مقطع در رابطه با بررسی گسترش آنومالی های محورهای AXE III و AXE II که بترتیب بین نقاط 20 تا 60 و 170 تا 220 در نقشه تغییرات مقاومت الکتریکی تفکیک شده انجام گرفته است، اندازه گیری ها از نقطه 75- تا 465 برداشت شده است، یک رگه سیلیسی در محدوده نقاط 20 تا 40 در سطح زمین مشاهده می شود، همچنین در فاصله نقاط 185 تا 230 در سطح زمین قلوه سنگ های سیلیسی بصورت پراکنده و احتمالا" در رابطه با فرسایش رگه سیلیسی دیده می شود، این شبه مقطع با مشخصات AB=MN=a=20 متر و با جهش ایستگاهی 20 متر برداشت

در نقشه شماره Bz1 متبه مقطع خام با تصحیح توپوگرافی ارائه گردیده است، در این شبه مقطع یک آنومالی که دارای ریشه نمی باشد در فاصله نقاط 5 تا 50 تفکیک شده که مطابقت با AXE III دارد، یک آنومالی بزرگ در فاصله نقاط 95 تا 140 مشخص گردیده و همچنین آنومالی دیگری در فاصله نقاط 185 تا 230 ظاهر شده که با آنومالی AXE III مشخص گردیده و محینین آنومالی محدوده سنگ های خرد شده سیلیسی در سطح زمین دیده می شود که می تواند آثار رگه سیلیسی باشد، در شبه مقطع II در محدوده آنومالی های AXE III و AXE III مقطح می تواند آثار رگه سیلیسی یاشد، در شبه مقطع II در محدوده آنومالی های AXE III و III AXE مقدار شارژابیلیته زیاد می گردد که انطباق خوبی با آنومالی های RS دارد، یک آنومالی نسبتا" بزرگ و وسیع بین نقاط 95 تا 155 که شدت شارژابیلیته به حداکثر 10.5mv/v می رسد تفکیک شده و مطابقت نسبی با آنومالی RS در این محدوده دارد.

در نقشه شماره Pizi مقاطع مدلسازی شده ارائه گردیده است ، در مقطع مدلسازی شده RS یک زون آنومالی بین نقاط 15 تا 60 مشخص شده که با تغییراتی در عمق ادامه دارد، شیب این رگه قائم بوده و همبری های F1 و F2 محدوده آن را مشخص می کند این آنومالی در ارتباط با آنومالی AXE III بوده و مطابقت کامل با آن دارد ، در فاصله نقاط 145 تا 175 یک آنومالی RS که دارای شیب کمی بطرف شمال غرب دارد مشخص شده که در ارتباط با II می باشد و با قسمت جنوب شرقی محور AXE II انطباق کامل دارد ، آنومالی سطحی بین نقاط 235 که در عمق به آنومالی دیگری ارتباط پیدا می کند نیز در مقطع مدلسازی تفکیک گردیده است.

در مقطع مدلسازی شده IP و در محدوده آنومالی AXE III آنومالی IP با حداکثر شارژابیلیته 16mv/v ظاهر گردیده است، همبری هایF1 و F2 محدوده آن را نشان می دهد، در محدوده آنومالی AXE II نیز دو مرکز آنومالی IP در زیر نقاط 135 تا 155 و 175 تا 200 تفکیک گردیده است، همبری های F3 ، F3 و F5 محدوده های یاد شده از یکدیگر تفکیک می کند.

محدوده های دیگری نیز بصورت مراکز منفرد بین نقاط 255 تا 415 دیده می شود که احتمالا" مربوط به یک زون بوده و بنظر می رسد شارژابیلیته نسبتا" زیاد در رابطه با زون های آرژیلی آبرفتی این محدوده می باشد،مقدار Error=19.9 می باشد، با توجه به زمین شناسی منطقه و تلفیق نتایج انجام دو گمانه الکتریکی با مشخصات زیر پیشنهاد می گردد.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
75°nw	N137°e	100 متر	3137300	793341	35	75	BH6
70°se	N137°e	100 متر	3137409	793224	195	75	BH7

- بررسی شبه مقطع 105 نقشه های شماره B-B'zı ، 8-Bzı و Zı⁻8-B'zı و

این شبه مقطع بمنظور بررسی آنومالی (AXE <u>VIII</u>)، که بین نقاط 500 تا 530 از مقطع 105 مشخص شده انجام گرفته است، اندازه گیری ها از نقطه 245 تا 565 با AB=MN=a=20 متر و جهش ایستگاهی 20 متر برداشت شده است، نقشه شماره Bz-8 شبه مقطع خام با تصحیح توپو گرافی AXE <u>VIII</u> می دهد . همانگونه که در نقشه دیده می شود زون آنومالی RS مطابق با محور <u>NIII</u> AXE تفکیک گردیده است، در شبه مقطع IP نیز در این منطقه مقدار IP در دو محدوده بصورت زون کوچکی به حداکثر 7mv/v تا 10mv/v می رسد.

در نقشه شماره 8-Bźz۱ مقطع مدلسازی شده ارائه گردیده است همانگونه که در نقشه دیده می شود در محدوده آنومالی (AXE <u>VIII</u>) آنومالی RS بصورت بارزی مشخص شده که شیب آن قائم بوده و همبری های F1 و F2 محدوده آن را نشان می دهد.

در مقطع مدلسازی IP و در محدوده آنومالی RS مقدار شارژابیلیته کمی زیاد می گردد که در عمق مقدار آن به 10mv/v می رسد،با مطابقت بین آنومالی RS و IP و محور آنومالی AXE <u>VIII</u> و تلفیق اطلاعات زمین شناسی و با توجه به رخنمون رگه سیلیسی در محدوده نقاط 485 تا 535 انجام یک گمانه اکتشافی با مشخصات زیر پیشنهاد می گردد.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
55°se	N137°e	80 متر	3137874	793167	555	105	BH8

${f Z}_2$ 2 - بررسی نتایج حاصله در زون شماره ${f Z}_2$

برداشت ها دراین زون در محدوده های با مختصات زیر انجام گرفته است.

$$A = \begin{cases} x = 793923 & \{x = 793652 & \{x = 794125 & \{x = 793878 \\ Y = 313792 & \{Y = 3137262 & \{Y = 3137425 & D \\ Y = 3137425 & \{Y = 3137594 \\ F & G & H \\ \{Y = 3137495 & \{Y = 3137661 & \{Y = 3139322 & \{Y = 3139490 \\ Y = 313940 \\ Y = 313940 \\ Y = 31394 \\ Y = 313$$

برای برداشت داده ها ابتدا خط مبنائی با امتداد N35E و موازی با رگه های سیلیسی در زمین مشخص گردید ، نقطه00 خط مبنا دارای مختصات X=793923 و Y=3137092 می باشد، این منطقه ابتدا زیرپوشش با آرایه مستطیلی Rectangle قرار گرفت که پس از تفسیرهای مقدماتی و تعیین محورهای آنومالی مقاوم الکتریکی، تعداد دو شبه مقطع از مراکز آنومالی تهیه گردید، شبکه اندازه گیری 20 ×50 متر بوده و کلیه مقاطع و ایستگاه های اندازه گیری با G.P.S در زمین پیاده گردید، موقعیت مقاطع ، ایستگاه های اندازه گیری محدوده شامل ترانشه ها و محل گمانه های اکتشافی پیشنهادی در نقشه شماره HBZ2 نقشه زمین شناسی نیز در این نشان داده شده است. نتایج محدوده رگه های سیلیسی از آخرین نقشه زمین شناسی نیز در این نشان داده شده است. نتایج بصورت نقشه های تغییرات مقاومت الکتریکی و شارژابیلیته در نقشه شماره 2B-2-2 و شبه مقاطع در نقشه های شماره BZ-3-5، 2Z^{*}-6, 2Z^{*}-4, 20 محدوده است. تایج نقشه های شماره BZ-5، 2Z^{*}-6, 2Z^{*}-4, 20 محدوده است. تایج معدودت نقشه های تغییرات مقاومت الکتریکی و شارژابیلیته در نقشه شماره 2B-2 و شبه مقاطع در نقشه های شماره BZ-5، 2Z^{*}-6, 2Z^{*}-6, 2Z^{*}-4, 20 مقاطع در این نشان داده شده است. نتایج معروت نقشه های تغییرات مقاومت الکتریکی و شارژابیلیته در نقشه شماره 2B-2 و شبه مقاطع در نقشه های شماره BZ-5، 2Z^{*}-6, 2Z^{*}-6, 2Z^{*}-4, 20 مقاطع در این نشان یازه گردیده است. که مرحدود آنها پرداخته می شود. 2-Bz2 بررسى نقشه تغييرات مقاومت الكتريكي(RS) نقشه شماره 2-Bz2

در این نقشه تغییرات مقاومت الکتریکی RS در قسمت زیر و شارژابیلیته IP در قسمت بالای نقشه نشان داده شده است، همانگونه که در نقشه تغییرات مقاومت الکتریکی دیده می شود طیف تغییرات مقاومت الکتریکیRS بین 10 تا 170 اهم متر است، پربندی خطوط هم مقاومت الکتریکی 5 اهم متر انجام شده و مقیاس رنگ، زون های مقاوم و هادی الکتریکی را بخوبی مشخص کرده است، با توجه به اینکه رگه های سیلیسی با مقاومت الکتریکی زیاد در این نقشه ظاهر شده اند، محورهای آنومالی بر این مبنا تعیین وشماره بندی گردیده اند که مشخصات آن بصورت زیر می باشد.

- محور آنومالی AXE <u>VIII</u> ، این محور بین مقاطع 220 تا 260 ردیابی شده است مراکز آن در مقاطع 225 (ایستگاه 40+) و 235 (ایستگاه 80) قرار دارد این آنومالی از سمت جنوب محدود نشده است.

باید توجه داشت که در این زون گسترش آبرفت ها زیاد می باشد ، نتیجتا" آنومالی های ضعیف مقاوم الکتریکی در قسمت های آبرفتی که در مسیر رگه های سیلیسی است باید مهم تلقی گردد زیرا افت مقاومت الکتریکی در محدوده رگه های سیلیسی مدفون می تواند در اثر وجود آبرفت های دانه ریز باشد ضمن اینکه آبرفت های دانه درشت نیز می تواند دلیل ظهور آنومالی های مقاوم الکتریکی گردند رگه های سیلیسی از نقشه زمین شناسی در نقشه تغییرات مقاومت الکتریکی آورده شده و همانگونه که دیده میشود مطابقت خوبی بین محورهای آنومالی و رگه های سیلیسی وجود دارد ضمن اینکه گسترش آنها در محدوده های آبرفتی نیز مشخص گردیده است. 2-Bz2 - بررسى نقشه تغييرات شارژابيليته(IP) نقشه شماره 2-Bz2

این نقشه تغییرات شارژابیلیته IP در محدوده زون ZZ را نشان می دهد . همانگونه که در نقشه دیده می شود طیف تغییرات شارژابیلیته بین 3mv/v تا 11mv/v می باشد ، با توجه به نقشه دیده می شود که تغییرات شارژابیلیته در این منطقه بصورت محورهای مشخصی ظاهر نمی شود و احتمالا" تغییرات آن بیشتر در رابطه با زون های رسی در آبرفت ها است، برای نتیجه گیری بهتر، محورهای آنومالی RS در نقشه تغییرات IP آورده شده و لذا مقایسه آنومالی های RS با محدوده هائی که دارای شارژابیلیته زیاد هستند بخوبی مشخص گردیده است که در آنها موارد زیر را می توان تفکیک نمود:

- در محدوده محور آنومالي AXE I ، RS مقدار شارژابیلیته نیز نسبتا" زیاد است.
- در محدوده محور آنومالی AXEII ، RS در محدوده مقطع 15 یک مرکز آنومالی شارژابیلیته ظاهر شده و مقدار آن به حداکثر 9mv/v می رسد.
- در محدوده محور آنومالی AXE III ، RS مقدار شارژابیلیته نسبتا" زیاد بوده و مرکزی با شدت شارژابیلیته 8mv/v در مقطع 40 مشخص گردیده است.
- در طول محور آنومالی RS ، RS مقدار شارژابیلیته نسبتا" زیاد است ولی دو AXE <u>IV</u> ، RS مرکز آنومالی در محدوده مقاطع 70 و 130 بتریتب با شارژابیلیته 10mv/v و 9mv/v مشخص گردیده است همچنین در شمال شرق مراکز آنومالی IP در مقطع 150 با شدت شارژابیلیته 10mv/v مشاهده می شود.
- در طول محور آنومالی RS ، RS یک مرکز آنومالی IP در مقطع 115 با شدت شارژابیلیته 10.5mv/v مشخص شده است.
- در طول محور آنومالی AXE <u>VI</u> ، RS و در قسمت شمال شرق در بین مقاطع
 150 و 165 مقدار شارژابیلیته نسبتا" زیاد بوده و یک مرکز شارژابیلیته در مقطع
 155 با شارژابیلیته 9mv/v مشخص شده است.

- در طول محور آنومالی RS ، RS و ادامه آن از سمت جنوب غرب یک
 زون آنومالی IP در مقطع 155با شدت شارژابیلیته 10mv/v مشخص گردیده
- در طول محور آنومالی RS ، <u>VIII</u> AXE در محدوده مقطع 240 و ایستگاه شماره
 8mv/v که مطابق با رگه های سیلیسی میباشد مقدار شارژابیلیته به حداکثر 8mv/v
 می رسد که می تواند در رابطه با مینرالیزاسیون این رگه باشد.

بدین ترتیب با مقایسه آنومالی RS و IP در برخی مواقع زون هائی با شارژابیلیته نسبتا" زیاد در طول محورهای آنومالی RS وجود دارد که می تواند در رابطه با مینرالیزسیون سولفیدی ضعیف این رگه ها تلقی گردد.

7 -2 - 3 - بررسى شبه مقاطع

در این محدوده نیز بر مبنای محورهای آنومالی تفکیک شده تعداد 2 شبه مقطع برای بررسی گسترش محورهای آنومالی RS در مقاطع 70 و 135 تهیه شده که به بررسی نتایج آنها پرداخته می شود.

- بررسى شبه مقطع 70 نقشه هاى شماره 3-Bzz ، 3-Bzz ، 3-Bz و 3-B⁻zz ع-3-b

این شبه مقطع بمنظور بررسی محور آنومالی AXE <u>IV</u> انجام گرفته است، اندازه گیری بین نقاط 20 تا 240 انجام گرفته است . محور آنومالی RS (AXE <u>IV</u>) بین نقاط 50 و 110 واقع شده است . محور آنومالی RS (AXE <u>IV</u>) بین نقاط 50 و 110 واقع شده است ، نقشه شماره 22-8 شبه مقطع خام با تصحیح توپو گرافی را ارائه می دهد ، همانگونه که در نقشه دیده می شود یک زون آنومالی RS مطابق با محور <u>IV</u> AXE ظاهر شده است همچنین در فاصله نقاط 120 تا 180 و 200 تا 200 نیز زون های آنومالی مقاوم الکتریکی درعمق تفکیک گردیده اند.

در شبه مقطع خام IP آنومالی IP در محدوده آنومالی RS (IV RX) تفکیک شده که مطابقت با آنومالی RS در شبه مقطع خام را دارد، زون وسیع آنومالی IP که بین نقاط 120 تا 220 و در عمق ظاهر شده احتمالا" در رابطه با زون های آرژیلی و یا دگرسانی های آرژیلی می باشد. در نقشه شماره 25-3 مقاطع مدلسازی ارائه گردیده است ، همانگونه که در نقشه مدلسازی مقطع RS دیده می شود آنومالی RS مطابق با محور آنومالی<u>AXE IV</u> بین نقاط 70 تا 110 ظاهر گردیده و شیب آن قائم می باشد، همبری های F1 و F2 محدوده آن را مشخص می کند.

در مقطع مدلسازی IP در محدوده محور آنومالی ، AXE <u>IV</u> آنومالی IP بین نقاط 60 تا 90 ظاهر شده است که همبری های F1 و F2 محدوده آن را مشخص می کند، با توجه به مطابقت آنومالی های RS و IP از مقاطع مدلسازی شده و محور آنومالی<u>AXE IV</u> و پوشش آبرفتی منطقه که هیچگونه آثار رگه سیلیسی مشاهده نمی شود انجام یک گمانه اکتشافی با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول حفاري	Y	Χ	نقطه	مقطع	رديف
60°se	N125°e	60متر	3137748	205926	100	70	BH1

52

- بررسی شبه مقطع 135 نقشه های شماره 4-Bz2 ، 4-Bz2 و 22 4-B و 4-B و 4-B و 4-B

این شبه مقطع بمنظور بررسی قسمت شمال شرق محور آنومالی AXE <u>IV</u> (مقطع 135) انجام شده است، آنومالی AXE <u>IV</u> بین نقاط 130 تا 170 واقع شده و برداشت ها بین نقاط 10 و 200 با مشخصات AB=MN=a=40 متر و جهش ایستگاهی 20 متر انجام گرفته است، در نقشه شماره با مشخصات 4-Bz2 می مود در معانگونه که در نقشه دیده می شود در AXE <u>IV</u> به مقطع خام با تصحیح توپو گرافی ارائه شده است ، همانگونه که در نقشه دیده می شود در فاصله نقاط 80 تا 125 یک آنومالی RS ظاهر گردیده است که مطابقت با آنومالی RS، <u>IV</u> مشاهده نمی شود مقدار ندارد، در شبه مقطع <u>IV</u> نیز در محدوده آنومالی <u>AXE IV</u> آنومالی IP مشاهده نمی شود مقدار شارژابیلیته کلا" در عمق نسبتا" زیاد می شود.

در نقشه شماره 4-Bźz2 مقطع مدلسازی نشان داده شده است، با توجه به مقطع مدلسازی شده یک آنومالی سطحی بین نقاط 70 تا 130 تفکیک شده که اثرات آن نیز در نقشه تغییرات مقاومت الکتریکی با ازدیاد مقدار مقاومت الکتریکی نیز ظاهر گردیده است ولی رگه اصلی که بصورت مرکز محور آنومالی AXE <u>IV</u> در نقشه 22-4 ردیابی شده در این مقطع مدلسازی شده در بین نقاط 140 تا 170 و مطابق با محور <u>IV</u> AXE تفکیک گردیده است ، همبری های F1 و F2 محدوده آن را مشخص می کنند ، در شبه مقطع IP نیز مقدار شارژابیلیته بین نقاط 90 تا 150 زیاد بوده و در فاصله نقاط 130 تا 130 به حداکثر خود یعنی 14mv/v می رسد. هم بری های F1 و F2 محدوده آن را مشخص می کند و مطابقت خوبی بین <u>AXE IV</u> می رسد. هم بری های F1 و F2 محدوده آن را نقاط 130 تا 130 به حداکثر خود یعنی NMW/v می رسد. هم بری های F1 و F1 در مقاطع مدلسازی نقاط 130 تا 130 به حداکثر خود یعنی AXE <u>IV</u> می رسد. هم بری های F1 و F1 در مقاطع مدلسازی نقاط 130 تا 130 به حداکثر خود یعنی MMV/v می رسد. هم بری های F1 و F1 در مقاطع مدلسازی نقاط 130 تا 130 به حداکثر خود یعنی AXE <u>IV</u> می رسد. هم بری های F1 و F1 در مقاطع مدلسازی نقاط 130 تا 50 به حداکثر خود یعنی MMV/v می رسد. هم بری مای F1 و F1 در مقاطع مدلسازی نقاط 50 تا 50 به حداکثر خود یعنی AXE <u>F1</u> می رسد. هم بری های F1 و F1 در مقاطع مدلسازی

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
45° _{NW}	N125°e	100متر	3138289	206285	130	135	BH1

نتیجه گیری کلی و پیشنهادها Λ

همانگونه که در بخش اول گزارش آمده هدف از مطالعات ژئوفیزیک در محدوده معدنی بزمان مشخص کردن آنومالی های مقاوم الکتریکی RS در رابطه با رگه های مینرالیزه سیلیسی و ردیابی ادامه آنها در زیر آبرفت ها و همچنین تعیین گستره جانبی و عمقی آنها بوده است، همچنین در این رابطه تعیین همبری ها ، گسل ها و نهایتا" با تلفیق نتایج مطالعات ژئوفیزیک با دیگر اطلاعات از جمله زمین شناسی و ژئوشیمی این منطقه، تعیین محل گمانه های اکتشافی از اهداف این مطالعه بوده است.

در رابطه با اهداف خواسته شده از روش ژئوالکتریک شامل روش مقاومت سنجی Resistivity (RS) و قطبش القائی (IP) Induced Polarization (IP) استفاده شده و منطقه ابتدا زیر پوشش اندازه گیری این دو فاکتور فیزیکی با آرایه Rectangle گردیده و گستره جانبی آنومالی ها مشخص شده ، سپس در مراکز آنومالی ها با استفاده از آرایه دوقطبی – دوقطبی Dipole-Dipole گستره آن در عمق با تهیه شبه مقاطع و مقاطع مدلسازی شده مشخص گردید.

ابتدا با تهیه نقشه تغییرات مقاومت الکتریکی منطقه برای هر یک از مناطق Z1 و Z2 محورهای آنومالی مقاوم الکتریکی در رابطه با رگه های سیلیسی مشخص و مشخصات آنها معلوم گردید، این محورها برای زون شماره Z1 که در نقشه شماره Bz1-2 تفکیک گردیده عبارتند از:

 محور آنومالی شماره AXE I این محور بین مقاطع 45- تا 5- بین ایستگاه های 100 تا 250 واقع شده و طول آن 400 متر است، مرکز آنومالی در مقطع 15- و در ایستگاه 200 واقع شده است ،این آنومالی از طرف جنوب غرب منطقه محدود نشده و کلا" در محدوده آبرفتی قرار گرفته است ، با توجه به نقشه احتمالا"این محور آنومالی ، ادامه محور آنومالی AXE II در جهت غرب می باشد که بوسیله گسل F1 در آن جابجائی نیز صورت گرفته است.

محور آنومالی شماره AXE II – این محور بین مقاطع 00 تا 85 واقع شده و طول
 آن 850 متر است ، این آنومالی دارای مراکزی در مقاطع 10 ، 15 ، 40 ، 50 و 75 می باشد
 . ادامه احتمالی این محور آنومالی در جهت شرق نیز ردیابی گردیده و با خط چین مشخص
 گردیده است آثار احتمالی این رگه بصورت محدوده هائی با مقاومت الکتریکی نسبتا" زیاد

در نقشه قابل ردیابی است ، این قسمت از محور بعد از مقطع 120 در زیر آبرفت ها قرار گرفته است . می توان گفت که مجموع محور AXE I و AXE II بصورت یک رگه سیلیسی از مقطع 45- تا مقطع 160 می باشد که توسط گسل های F1 تا F7 قطع شده و بوسیله عملکرد آنها و تغییر مسیرهای محلی در آن صورت گرفته است .آثاری از این رگه در مقطع 125 ایستگاه های 200 در سطح زمین دیده می شود که ترانشه ای نیز در آن حفر گردیده است.این رگه با شماره V3 در نقشه مشخص شده است.

 محور آنومالی شماره AXE III – این محور آنومالی بین مقاطع 20 تا 100 قرار دارد که از طرف جنوب غرب و در محدوده مقطع شماره 20 توسط گسل F2 متوقف شده است ، طول آن 800 متر و در مقاطع 45 ، 50 و 85 دارای مراکزی است.
 ادامه این آنومالی از طرف شمال شرق به زون های مقاوم الکتریکی دیگری برخورد می کند که در زیر پوشش آبرفتی قرار دارند، بهمین جهت شاید بدلیل وجود آبرفت های دانه ریز مقاومت ظاهری اندازه گیری شده نسبتا" کم می باشد ولی آثار این رگه های سیلیسی بصورت ازدیاد نسبی مقاومت الکتریکی ظاهر شده است، ضمن اینکه باید در نظر داشت رمین شناسی و ادامه رگه های سیلیسی که آثاری از آن که در مقطع 115 و در ایستگاه 100 رزمین شناسی و ادامه رگه های سیلیسی که آثاری از آن که در مقطع 115 و در ایستگاه 100 رگه های سیلیسی این زون مقاوم الکتریکی بین مقاطع 120 تا 25 واقع شده و مقیاس رگه های سیلیسی است، زون مقاوم الکتریکی بین مقاطع 120 تا 25 واقع شده و مقیاس رنگ محدوده آنها را بخوبی مشخص می کند ، این زون ها بصورت محورهای آنومالی رنگ محدوده آنها را بخوبی مشخص می کند ، این زون ها بصورت محورهای آنومالی دارای مشخصات زیر می باشد.

AXE <u>IV</u> بین مقاطع 115 و 165 واقع شده و دارای مرکزی در مقطع 125 ایستگاه 20 می باشد.ادامه این رگه در جهت شرق و غرب نیز ردیابی شده و با خط چین مشخص گردیده است این رگه در نقشه با شماره V1 نشان داده شده است.

AXE <u>V</u> محدوده بين مقاطع 120 تا 175.

با توجه به نقشه محورهای III و <u>V</u> را می توان بصورت یک رگه بزرگ از مقطع 20 تا 175 در نظر گرفت.این رگه با شماره V2 در نقشه مشخص گردیده است.

در بخش شمالی محورهای آنومالی با مشخصات زیر تفکیک گردیده است:

محور آنومالی شماره VI AXE این آنومالی بین مقاطع 45- و 00 واقع شده طول
 آن 450 متر است که از طرف جنوب غرب محدود نشده است، مراکز آنومالی
 درمقاطع 25- و 5- واقع شده است این آنومالی بطور کامل در زیرپوشش آبرفتی

قرار دارد .ادامه این محور آنومالی را تا محدوده مقطع 100 می توان با توجه به تغییرات مقاومت الکتریکی ردیابی نمود که با خط چین در نقشه مشخص گردیده است.

- محور آنومالی شماره VII AXE این محور بین مقاطع 10 تا 50 قرار گرفته و طول آن 400 متر می باشد، مرکز آنومالی در مقطع 45 قرار گرفته است.ادامه این محور در جهت غرب و شرق نیز با توجه به تغییرات مقاومت الکتریکی ردیابی گردیده و با خط چین مشخص گردیده است، همانگونه که در نقشه دیده می شود این رگه بین مقاطع 15- تا 175 واقع شده و قسمت های شرقی آن در زیرپوشش آبرفتی قرار دارد، این محور آنومالی بوسیله گسل های F1 تا F7 قطع گردیده و تغییراتی در امتداد آن در اثر عملکرد گسل ها پدید آمده است این رگه در نقشه با شماره V4 مشخص گردیده است.
- محور آنومالی شماره <u>VIII</u> این محور آنومالی بین مقاطع 95 تا 135 واقع شده است طول این محور 400 متر می باشد، مراکز آنومالی در مقاطع 100 ، 105 و 120 واقع شده است.با توجه به نقشه می توان این محور آنومالی را ادامه محور آنومالی AXE <u>VI</u> دانست و مجموعه محور <u>IV</u> و <u>IIIV</u> را یک رگه بزرگ در نظر گرفت.این رگه با شماره V5 در نقشه مشخص گردیده است.

با توجه به تغییرات خطوط هم مقاومت الکتریکی گسل های متعددی در این زون ردیابی شده است که با حروف F1 تا F7 در نقشه نشان داده شده است ، امتداد این گسل ها شمال شرقی – جنوب غربی است، برخی از این گسل ها بصورت شکستگی هائی هستند که عملکرد آنها در بعضی رگه های سیلیسی بصورت تغییر امتداد آنها می باشد.

در منطقه 22 در نقشه های تغییرات مقاومت الکتریکی نقشه شماره 2-Bz2 محورهای آنومالی RXE I بصورت زیر مشخص گردیده است. محور آنومالی شماره AXE I محور بین مقاطع 00 و 15 واقع شده و طول آن 150 متر و دارای مرکزی در مقطع 5 ایستگاه 190 می باشد این محور از طرف جنوب غرب محدود نشده و ادامه دارد.
محور آنومالی شماره AXE II می محور از طرف جنوب غرب محدود نشده و احمالا" ایستگاه 190 می باشد این محور این معاطع 00 و 40 واقع شده و احتمالات ایستگاه 190 می باشد این محور از طرف جنوب غرب محدود نشده و ادامه دارد.
محور آنومالی شماره II می کند، مرکز آنومالی در مقطع 10 واقع شده و احتمالا" از طرف جنوب غرب ادامه پیدا می کند، مرکز آنومالی در مقطع 30 واقع شده و احتمالات قرار دارد.

محور آنومالی شماره AXE III ، این محور بین مقاطع 20 و 60 واقع شده طول آن 400 متر و مرکز آن در مقطع 40 ایستگاه 190 واقع شده است ، در محدوده مقطع 40 متر و مرکز آن در مقطع 40 ایستگاه 190 واقع شده است ، در محدوده مقطع 40 متلکرد یک گسل محدوده این آنومالی را کمی جابجا کرده است. (گسل 7)
محور آنومالی شماره IV AXE IV، این محور آنومالی وسیع بوده و بین مقاطع 60 تا 150 واقع شده و دارای شماره 40 متعددی است که در مقاطع 80 (ایستگاه 100) ، 100 محور آنومالی وسیع بوده و بین مقاطع 60 تا 150 متوجه به واقع شده و دارای مراکز متعددی است که در مقاطع 80 (ایستگاه 180) ، 100 محدوده آنومالی مراکز متعددی است که در مقاطع 80 (ایستگاه 180) ، 100 متوجه به واقع شده و دارای مراکز متعددی است که در مقاطع 80 (ایستگاه 180) ، 100 محدوده آنومالی ها دیده می شود که در نتیجه عملکرد گسل جابجائی در محدوده بنظر محدوده آنومالی پیدا شده است این گسل با شماره F3 در نقشه نشان داده شده است، بنظر می رسد که آنومالی III AXE ادامه محور II محور II می باشد که بوسیله گسل 52 در آن محدود آن محدوده آن محدوده آنومالی محدود آنومالی محدور II مالی محدود است که در نتیجه عملکرد گسل جابجائی در محدوده آنومالی پیدا شده است این گسل با شماره F3 در نتیجه مملکرد گسل جابجائی در محدوده آنومالی و آنومالی AXE III دامه محور II محدود II می باشد که بوسیله گسل 52 در آن محدود آن محدوده آنومالی پیدا شده است این گسل با شماره T3 در نقشه نشان داده شده است. ای آن محدور II آنومالی پیدا شده است این گسل با شماره T3 در نقشه نشان داده شده است.

- محور آنومالی<u>V</u> این محور آنومالی بین مقاطع 80 و 125 و شمال محور AXE <u>IV</u> قرار گرفته و طول آن 400 متر می باشد، مراکز آن در مقاطع 90 و 120 بترتیب در ایستگاه های 270 و 220 واقع شده است.
- محور آنومالی شماره <u>VI</u> ماین AXE ، این آنومالی در محدوده مقاطع 150 تا 180 قرار گرفته و طول آن 300 متر بوده و دارای مرکزی در مقطع 150 (ایستگاه 210) میباشد.بنظر می رسد که این محور آنومالی ادامه محور آنومالی <u>AXE V</u> می باشد، ادامه تقریبی آن را تا مقطع 220 می توان ردیابی نمود که در نقشه با خط چین نشان داده شده است.
- محور آنومالی <u>VII</u> AXE ، این محور آنومالی بین مقاطع 170 و 200 واقع شده و طول
 آن 300 متر می باشد، مرکز آنومالی در مقطع 180 و در ایستگاه 90 قرار گرفته است.
 ادامه احتمالی این محور تا مقطع 210 با خط چین رسم شده است.
 محور آنومالی <u>VIII</u> AXE ، این محور بین مقاطع 220 تا 260 ردیابی شده است مراکز
 آن در مقاطع 225 (ایستگاه 40+) و 235 (ایستگاه 80) قرار دارد این آنومالی از

سمت جنوب محدود نشده است.

باید توجه داشت که در این زون گسترش آبرفت ها زیاد می باشد ، نتیجتا" آنومالی های ضعیف مقاوم الکتریکی در قسمت های آبرفتی که در مسیر رگه های سیلیسی است باید مهم تلقی گردد زیرا افت مقاومت الکتریکی در محدوده رگه های سیلیسی مدفون می تواند در اثر وجود آبرفت های دانه ریز باشد ضمن اینکه آبرفت های دانه درشت نیز می تواند دلیل ظهور آنومالی های مقاوم الکتریکی گردند رگه های سیلیسی از نقشه زمین شناسی در نقشه تغییرات مقاومت الکتریکی آورده شده و همانگونه که دیده میشود مطابقت خوبی بین محورهای آنومالی و رگه های سیلیسی وجود دارد ضمن اینکه گسترش آنها در محدوده های آبرفتی نیز مشخص گردیده است.

نقشه های تغییرات شارژابیلیته هر دو منطقه Z1 و Z2 نیز در برخی موارد وجود آنومالی های شارژابیلیته ضعیف را که در رابطه با مینرالیزاسیون رگه های سیلیسی می باشد مشخص می کند و انطباق با محورهای آنومالی RS دارند و در موارد دیگر نیز زون های آرژیلی دلیل زیاد بودن مقادیر شارژابیلیته می گردد.ولی محورهای آنومالی شارژابیلیته بصورت بارزی ردیابی نشده است.

بر مبنای تفسیرها و تعیین محورهای آنومالی RS تعداد 5 شبه مقطع از زون Zl و دو شبه مقطع از زون Z2 تهیه گردید، در کلیه این شبه مقاطع و مقاطع مدلسازی شده محدوده محورهای آنومالی RS آورده شده و در مقاطع مدلسازی تفسیرهای لازم انجام و گستره آنومالی های RS مشخص گردیده سپس با تلفیق نتایج مقاطع مدلسازی شده S و IP و اطلاعات زمین شناسی و تطابق با رگه های سپس یا تلفیق نتایج مقاطع مدلسازی شده راد آنومالی های RS دارای پوشش آبرفتی میباشند) و بحث و تبادل نظر مکرر با کارشناسان زمین شناس منطقه، در هر شبه مقطع با اطلاعات موجود، محل گمانه های اکتشافی با مشخصات کامل آنها ارائه گردید، در زیر مجموعه این گمانه های اکتشافی و مشخصات آنها برای هر یک از زون ها ذکر می گردد.

زون شماره Z₁

مشخصات محل گمانه های اکتشافی در زون Z1 (بزمان)

مختصات نقطه حفاري		طول	شيب	آزيموت	نقطه	شماره	شماره
Y	Χ	حفاري			حفاري	مقطع	حفاري
3136767	792595	40متر	50°nw	N137°e	195	-15	BH1
3137028	792320	60متر	75°se	N137°e	595	-15	BH2
3137081	792992	1250متر	75°se	N137°e	120	35	BH3
3137143	793214	750متر	70°se	N137°e	20	55	BH4
3137198	793156	100متر	60°nw	N137°e	100	55	BH5
3137300	793341	100متر	75° _{NW}	N137°e	35	75	BH6
3137409	793224	100متر	70°se	N137°e	195	75	BH7
3137874	793167	100متر	55°se	N137°e	555	105	BH8

زون شماره Z₂

مشخصات محل گمانه های اکتشافی در زون Z2 (بزمان)

مختصات نقطه حفاري		طول	شيب	آزيموت	نقطه	شماره	شماره
Y	X	حفاري			حفاري	مقطع	حفاري
3137748	205926	60متر	60°se	N125°e	100	70	BH1
3138312	206253	100متر	70°se	N125°e	170	135	BH2

مسلما" بعد از حفاری های اکتشافی و بررسی نتایج می توان محل های دیگری را نیز بر مبنای مطالعات انجام شده ارائه نمود.

با توجه با نتایج بدست آمده و توجیه مطالعات تکمیلی نقشه های مقاومت الکتریکی و محورهای آنومالی مجموعا"در یک نقشه با مقیاس 1/10/000 با شماره Z2-5 ارائه گردیده است، بر طبق این نقشه ادامه مطالعات در جنوب منطقه Z2 و شمال و جنوب و غرب منطقه Z1 پیشنهاد می گردد . این مطالعات باید با تائید کارشناسان زمین شناسی منطقه انجام گیرد.

تشکر و امتنان 9

بدینوسیله از آقای مهندس ناصر عابدیان مجری محترم طرح و آقای مهندس بهروز برنا مدیر محترم امور اکتشافات معدنی سازمان زمین شناسی و معدنی کشور به جهت همکاری صمیمانه ایشان تشکر می شود، همچنین از آقای مهندس ابراهیم شاهین مجری محترم فنی طرح و مدیر خدمات اکتشاف و آقای مهندس امیدوار زمین شناس منطقه که در بحث و تبادل نظر در مورد نتایج ژئوفیزیک در جلسات مکرر شرکت کرده اند تشکر می شود ، از آقای مهندس سید ابوالحسن رضوی ناظر فنی این طرح به جهت همکاری صمیمانه مشارالیه با اکیپ های ژئوفیزیک تشکر میشود.

این مشاور آمادگی کارشناسان خود را جهت هر گونه بحث و تبادل نظر در مورد نتایج ژئوفیزیک اعلام می دارد.

مهندسين مشاور و خدمات زمين فيزيك